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Prelims



Preliminaries I: Graphs and adjacency

A graph is an ordered pair G = (V, E) of sets, where V is the vertex (or
node) set, and E is the edge set, with

E ⊂ {{x, y} | x, y ∈ V, x ̸= y}. (1)

A graph with vertex set {x1, x2, . . . , xn} has an edge between vertices
xi and xj if {xi, xj} ∈ E, and these vertices are then called adjacent, or
neighbours.

The degree d(v) of a vertex v is the number of vertices that are
adjacent to it.
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Preliminaries II: Adjacency and Laplacian matrices

Let the vertex set be V = {1, 2, . . . ,n}. The adjacency matrix AG of the
graph G is defined by entries

aij =
{
1 if {i, j} ∈ E
0 otherwise

(2)

The Laplacian matrix LG of the graph G is defined by the entries

lij =


−1 if {i, j} ∈ E
d(i) if i = j, and
0 otherwise.

(3)

Recall from previous lectures that LG = DG − AG, where the degree
matrix DG, is diagonal, with (i, i)-th entry d(i).
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Another definition of LG

We can decompose LG edge-wise, resulting in an expansion that
illuminates the link between the graph structure and the Laplacian’s
spectral properties. First, we need some more definitions.

Definition
Suppose G = (V, E) is a graph with V = {1, 2, . . . ,n}. For an edge
{u, v} ∈ E, we define an n× n matrix LG{u,v} by

LG{u,v}(i, j) =


1 if i = j and i ∈ {u, v},
−1 if i = u and j = v, or vice versa,
0 otherwise.

(4)

Lemma
For a graph G = (V, E), we have the edge-wise decomposition
LG =

∑
{u,v}∈E LG{u,v} .
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Some useful facts

Lemma
The eigenvalues of a real symmetric matrix, such as LG, are real.

Proof.
We prove this for the self-adjoint complex case (H∗ = H ∈ Cn×n), and
note that the real symmetric case (HT = H ∈ Rn×n) is a special case
of this.

Let H ∈ Cn×n be an arbitrary self-adjoint matrix.

Let x be a non-zero eigenvector with associated eigenvalue λ ∈ C.
We have x∗Hx = λx∗x and x∗Hx = x∗H∗x = (Hx)∗x = (λx)∗x = λ̄x∗x.
Thus, λ = λ̄, which implies λ ∈ R.
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LG is positive semidefinite

Lemma
For a signal x ∈ Rn defined on the vertices of G, we have the
quadratic form xTLG{u,v}x = (xu − xv)2.

Lemma
LG is positive semidefinite, i.e., xTLGx ≥ 0, ∀x ∈ Rn, and its
eigenvalues are non-negative

Proof.
Postive semidefiniteness is immediate from the lemma above and
the edge-wise decomposition of LG.

Non-negativity of eigenvalues is is shown as follows. For an
eigen-pair (λ, x ̸= 0), we have

0 ≤ xTLGx
= xT(λx)
= λ(xTx),

which implies λ ≥ 0, noting that xTx > 0.

We can find n eigenvalues (not necessarily distinct) of LG, and order
them as 0 ≥ λ1 ≥ λ2 ≥ · · ·λn.
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Connectedness

Before we can link the spectral properties of LG with the structure of
G, we need a couple more definitions.

Definition (Path)
A path is a non-empty graph P = (V, E) of the form (defined without
loss of generality)

V = {x0, x1, . . . , xn},
E = {{x0, x1}, {x1, x2}, . . . , {xn−1, xn}},

where all the vertices xi are distinct.

Definition (Connectedness)
A non-empty graph G is called connected if any two of its vertices are
contained in a path in G.
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A link between the spectrum of LG and the structure of G

Theorem
For any graph G, λ1 = 0 for LG. If G = (V, E) is a connected graph,
where V = {1, 2, . . . ,n}, then λ2 > 0

Proof.
Consider a signal x = (1, 1, . . . , 1)T ∈ Rn. Then, the i-th entry of
m = LGx is mi =

∑n
k=1 lik. From the first definition of LG, we know that

the rows sum to 0, i.e., mi = 0 for all i, and so LGx = 0x = 0, and 0 is
an eigenvalue of LG.

Let z ̸= 0 be an eigenvector associated with the 0 eigenvalue, i.e.,
LGz = 0. Then, zTLGz =

∑
{u,v}∈E(zu − zv)2 = 0. This implies that for all

{u, v} ∈ E, zu = zv. Since G is connected, this means that zi = zj for all
i, j ∈ V. That is, z = α(1, 1, . . . , 1) for some α ∈ R. Thus, The
eigenspace of λ is Span((1, 1, . . . , 1)), and the (geometric) multiplicity
of λ = 0 is 1. This implies λ ̸= 0, and thus λ > 0.
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Another link between the spectrum and structure of G

Definition (Connected Component)
A connected component of a graph G = (V, E) is a subgraph G′(V′, E′),
with V′ ⊂ V, and E′ = {{x, y} ∈ E | x, y ∈ V′}, in which any two vertices
i, j ∈ V′ are connected while for any i ∈ V′ and k ∈ V V′, i, k are not
connected.

Corollary
Let G = (V, E) be a graph. Then, the (geometric) multiplicity of 0 as an
eigenvalue of LG equals the number of connected components of G.

We will leave the proof of this corollary as a homework exercise.

Hint: Use the same argument as in the proof of the theorem above,
and letting G1 = (V1, E1),G2 = (V2, E2), . . . ,Gk = (Vk, Ek) be the
connected components of G, consider the k signal vectors
{w1,w2, . . . ,wk} defined by

(wi)j =
{
1 if j ∈ Vi
0 otherwise
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Next session...

• Graph Fourier Transform
• Spectral Graph Neural Networks
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Graph Neural Networks



The graph neural networks, high level

We now describe the spectral graph neural network model. The
encoder uses both the features matrix and the graph structure to
compute embeddings,

Z = ENC(X,W; ΘE)

This is usually implemented recursively till convergence

Zt+1 = ENC(X,W, Zt; ΘE),

where the parameters ΘE are reused at every iteration. Upon
convergence (t = T), we can generate output graph or node labels,

ŷS = DEC(X, ZT; ΘS), (5)

where ΘS are the (semi-)supervised loss parameters. The
computation of ZT and ŷS is repeated in each iteration of the training
process (which can be performed via backprop, for example).
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The graph convolution framework (GCF) components

Before we can describe the spectral graph neural network, we need
to describe some of its components.

• Node embeddings: Hl ∈ Rn×dl , where dl are the number of
features or “filters” in the l-th layer.

• K Patch functions: {fk(W,Hl)}Kk=1, which are n× n matrices
defining which nodes interact at each step of the convolution.
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The graph convolution framework components (GCF) II

• Convolution filters’ weights: For patch k and layer l, we can
define filter weights Θl

k ∈ Rdl×dl1 . For each patch-layer pair,
• Θl

k: each column is a filter, and there is a stack of dl+1 filters.
• dl and dl+1 is similar to the number of channels in layers l and l+ 1
in CNNs.

• ml+1
k = fk(W,Hl)HlΘl

k
• Consider the j-th column of HlΘl

k: each element is the inner
product of that node’s features with the j-th filter’s weights, and
you do this for all nodes (and for all dl+1 filters) .

• The i-th row of fk: This tells you how to sum together the inner
products computed by the previous step to get the “convolved”
values of the dl+1 features for the i-th node (for the k-th patch).
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The graph convolution framework components (GCF) III

• Merging functions: Hl+1 = h(ml+1
1 , . . . ,ml+1

K ). These can be a an
averaging, concatenation, more complex MLP, followed by a
nonlinearity.

• After L convolution layers, we have the nodes’ embeddings
Z = HL.
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Graph convolution via the Fourier transform

We can generalize the Fourier transform defined on Euclidean
domains (e.g., grids) to graph structured domains. Let x ∈ Rn be a
graph signal, and Θ be a filter (linear operator) defined on Euclidean
domains, such that Θx is their convolution. We want to find an
analogue of this, x ∗ θ, for general graphs.

F(Θx) = F(x)⊙F(θ) LHS not defined on graphs
x ∗ θ = F−1(F(x)⊙F(θ)) RHS used to define LHS on graphs

Here I think Θ is the operator that performs convolution on grids, so
you can write its operation in matrix notation, Θx (i.e., as a linear
operator acting on a signal).

But more generally you want to write convolution using the explicit
operator ∗. Then, θ is the symbol used to express the filter (I think in
analogy to impulse response in LTI systems), and this is what is
convolved with the signal x.
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Graph convolution via the Fourier Transform

Let L̃ = I− D1/2WD1/2 be the normalized Laplacian of a graph. It is
real, symmetric positive semidefinite matrix, and admits an
orthonormal eigendecomposition, L̃ = UΛUT. For x ∈ Rn, the discrete
graph Fourier transform and its inverse are defined as

F(x) = x̂ = UTx and F−1(x̂) = Ux̂

Thus,

x ∗ θ =U(UTx⊙ UTθ)
=Udiag(UTθ)UTx
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Spectral Convolution Neural Networks (SCNNs)

We now consider a special case of the GCF in light of the above
definition of the graph Fourier transform. SCNNs learn convolution
filters that act on the basis provided by the eigenvectors of the graph
Laplacian. Each eigenvector gives a patch function, and we can pick a
subset K of the “most informative” eigenvectors as our patch
functions.

For the j-th feature on the l+ 1-th layer, we have

Hl+1:,j = σ

 dl∑
i=1

UKFli,jUTKHl:,i

 1 ≤ j ≤ dl+1 and i eqi ≤ dl,

where Fli,j are K× K trainable diagonal matrices containing filter
weights in the spectral domain, and UK is a matrix with K of the
eigenvectors of L̃, and σ is a non-linearity (applied componentwise).

Compare this to Udiag(UTθ)UTx = F−1(F(x)⊙F(θ))
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Spectral Convolution Neural Networks in GCF form

The equation in the previous slide can be reformulated into the GCF
form, Hl+1 = σ

(∑K
k=1 ukuTkHlΘl

k

)
. To do this, first note that

Hl+1:,j = σ

 dl∑
i=1

UKFli,jUTKHl:,i


= σ(

K∑
k=1

dl∑
i=1

Fli,j,kHl:,i),

where uk are the top K eigenvectors, and Fli,j,k in the k-th diagonal
element of Fli,j. This follows from the standard outer product
expansion, Udiag(δ)UT =

∑
k δkukuTk, where δ is a vector and uk is the

k-th column of the arbitrary matrix U. We can then just collect
vectors into matrices.
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Some remarks

There are O(dldl+1K) terms in the learnable parameter set F. This can
be computationally demanding, and so Bruna et al. and others have
described some smoothness constraints on the parameters to
reduce the number of degrees of freedom (via splines). You can read
more about this in the paper.
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