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Abstract

A system’s behavior can be affected by the environment that it operates in,
which can lead to batch variability in measurements. If data are to be made
independent of the environment they were collected in, such variability must be
compensated for. One approach involves performing calibration measurements
on individual environments, and using these with parameterized models to
predict system behavior in a reference environment, with the effects of en-
vironmental variation removed. This calibration-correction workflow can be
challenging in biological contexts, because biological models tend to have many
more parameters than measurable quantities, such that the outputs of the sys-
tem are insufficiently informative for identifying parameter values uniquely. In
this study, we define a model-based calibration procedure for reducing system
variability across environments, and provide a set of parameter consistency
conditions under which the prediction steps in the procedure are guaranteed to
work, even in the presence of parameter non-identifiability. We demonstrate
our results on real and simulated data examples from synthetic biology.

1 Introduction

Batch- or environment-specific effects in the measured behavior of a system can be a major
confounding factor in data-intensive workflows. Calibration measurements performed on indi-
vidual environments may be used, in conjunction with parametrized dynamical models of the
systems under consideration, to correct for these variations. Such ‘calibration and correction’
methodologies [1] involve identifying parameters and transferring them across models in differ-
ent environments. This task can be complicated by the fact that model parameters may not be
identifiable, even in a structural1 sense.

In this paper, we consider systems comprising processes operating in different environments,
and describe the problem of reducing the variability in the observed behavior of a process
across environments in terms of what we call the data correction problem. Solving this problem
involves finding a method for transforming the observed behavior of a process from a given
(candidate) environment into what it would have looked like had it been collected in a reference
environment. The idea being that whenever data are collected in a given environment, they
should be transformed into their reference environment versions, making it possible to directly
compare measurements from different environments.

Once the data correction problem has been defined, we describe a model-based calibration
procedure called the calibration-correction method for solving it. This procedure is based on

1See Definitions 1 - 3 below.
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a similar method used for correcting wind-tunnel data collected across different test facilities
[1]. The assumption underlying the method is that there are certain features that vary from
environment to environment, and the variation of these features can be captured as the variation
of certain environment-specific parameters. Furthermore, we assume the parameters associated
with the process (process-specific parameters) whose behavior we are interested in do not change
across environments. In general, we expect this assumption to hold for sufficiently fine-grained
models, becoming more approximate when coarser models are used.

The calibration-correction method involves first performing a set of calibration experiments on the
reference and candidate environments, and using corresponding calibration models to estimate
the environment specific parameters associated with each environment. Subsequently, the
behavior of a test process, whose behavior we are interested in transforming across environments,
is measured in the candidate environment, and its process specific parameters are estimated
from the measured data and a corresponding model. This estimation step is performed with the
environment specific parameters for the candidate environment fixed at the values obtained at the
calibration stage. Finally, the prediction for the process behavior in the reference environment is
generated using the test process model’s process specific parameters, along with the environment
specific parameters for the reference environment. The data correction problem and calibration-
correction method are defined in Section 4 below.

In the description of the calibration-correction method above, we use parameters from different
parameter estimation steps in the final test process model. When these parameters are structurally
non-identifiable, combining parameters in this manner can fail. In Sections 5-7, we describe
a set of necessary and sufficient consistency conditions under which the non-identifiability of
parameters does not hinder the calibration procedure.

Our results will rely on the fact that the set of structurally non-identifiable parameters is an
equivalence class with respect to the observed behavior (i.e., outputs) of a system for a given
set of initial conditions and inputs [2], and that the data being transformed involve only output
variables, and not the trajectories of the full set of state variables. We also show that these
consistency conditions may be violated when the non-identifiability possesses a certain type of
parametric covariation, and describe a modification to the methodology that allows it to meet
the consistency conditions in the presence of such covariation (Section 6). Throughout this study,
we demonstrate the definitions and results on an example involving real experimental data, and
demonstrate some of the more theoretical results using simulated data (Section 8).

2 Motivating Case Study: Reduction of Variability in Genetic Circuit
Behavior across Cell Extracts

In this section, we describe an example from synthetic biology that motivates the development of
the calibration framework and the identifiability results described in this study. A primer on the
key biological terminology used here can be found in Appendix F.

2.1 Circuits and Extracts

A key task in synthetic biology is the design of genetic circuits [3, 4], which are networks of
interacting genes, proteins, and other biological molecules. The simplest examples of circuits
are the expression of a protein under a constitutively (constantly) expressed promoter, or the
repression of a protein’s expression by a transcription factor protein, which is itself expressed
constitutively. More complex circuits include the incoherent feed-forward loop [5], which
generates pulses by first expressing a protein, and then repressing it after a time delay, or the
so-called ‘repressilator’ [3], which comprises a network of three proteins repressing one another
in a cyclical fashion and displaying oscillatory behavior due to the time delays involved in protein
expression.

Such circuits may be used in various applications, such as the production of pharmaceuticals and
medical therapeutics [6], drug discovery [7] and biosensors [8]. The design of these circuits in
live cells can be time consuming [9], both because of the difficulty of the process of cloning the
genetic circuits onto DNA plasmids, and of incorporating these plasmids into live cells. This, in
turn, means that the design-build-test iterations for these circuits can be slow, and has motivated
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the development of cell extracts as prototyping platforms for iterating over circuit designs, in
analogy to electrical circuit breadboards used in electrical engineering or wind tunnels used in
aeronautics.

Cell extracts, as their name suggests, are extractions of the cytoplasmic contents of (typically)
bacterial or yeast cells. These contents include the molecular machinery needed for the processes
of transcription and translation. Once an extract batch has been produced, DNA and raw materials
such as nucleotides and amino acids can simply be added to it, and the genetic circuit encoded
by the DNA is expressed, displaying measurable dynamics in the concentrations of mRNA and
proteins.

2.2 Circuit Variability and Data Correction

Despite being simplified prototyping platforms for genetic circuit design, extracts can display large
variability between prepared batches, which limits our ability to reliably generalize experimental
data measured in any one extract [10, 11, 12].

Figure 1 shows the expression of six fluorescent proteins under the control of constitutively
expressed promoters in each of three extracts. It shows that the three extracts express the same
set of circuits at different levels. In the context of the process-environment duality described in

Figure 1: There is significant batch-to-batch variability in extracts. We expressed six constitutive
reporter constructs (n= 5, technical repeats, shaded region= standard deviation) in three extract
batches prepared by different scientists. Each of the constructs was expressed on linear DNA.

the Introduction, each circuit is the process, and the extracts are the environments.

3 Notation and Preliminary Ideas

3.1 Experiments, Systems, Models and Parameters

We consider systems S = (E,P) described as a combination of an environment E and a process P,
and define an experiment H = (S, x0, y) to be the execution of a system under initial conditions
x0 and output measurements y , where the bar denotes the assumption that experimental data
reflect the ground truth. Time dependent inputs may be included without significant change to
the results derived in this paper, and are suppressed for simplicity.

The parameter vector θ of a model M associated with a given experiment will be partitioned into
environment specific parameter coordinates θe ∈Rqe , and process specific parameter coordinates
θp ∈ Rqp , denoted θ = (θe,θp). We do not restrict these parameters to be in the positive
orthant, since any positive parameters may be log-transformed, as we do in the running example
throughout this study.

The choice of which parameters are primarily environment specific and which ones are process
specific is part of the modeling process, and can require modeler intuition, application domain
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expertise and some iterative testing. However, a general guideline for defining the partition may
still be prescribed: environment specific parameters are parameters associated primarily with
components that are present in the system regardless of the the process implemented, while
process specific parameters are parameters associated with components that may no longer
be present in the system when the process is changed. In the biological example discussed
in this study, environment specific parameters are the concentration of transcriptional and
translational machinery in the extracts and the elongation rates for transcription and translation
(Examples 1–4). Examples of process specific parameters include promoter-transcription factor
binding parameters or transcription factor dimerization parameters.

Experiments are modeled using initialized parametrized models with the ordinary differential
equations (ODEs) of the form

ẋ(t) = f (x(t),θ ),
y(t,θ , x0(θ )) = h(x(t),θ ), x(0) = x0(θ ).

(1)

The state and initial condition vectors are denoted x(t), x0(θ) ∈Rn
+, where we often suppress

t and θ to unclutter notation. The solutions are assumed to exist for all t ≥ 0, the parameter
vector symbol is θ = (θe,θp) ∈ Ω ⊆RqE+qP , where Ω is the set of all parameter values of interest.
The output at time t is denoted y(t,θ , x0) ∈Rr , with y(θ , x0) denoting an entire trajectory over
the appropriate interval of existence. The functions f and h are assumed to be analytic vector
fields with respect to x in some neighborhood of any attainable x , and time dependence of the
vector fields can be modeled by including t in the state variables [13], if necessary. Without
loss of generality, we do not explicitly model inputs to the system, finite intervals of existence of
solutions to our ODEs, or restrictions of the state and parameter spaces to sets smaller than the
non-negative orthant. The mathematical framework and arguments we develop do not depend on
these simplifications, and the general case can be included if needed. We will use the shorthand
y(θ , x0) = M(θ , x0) to refer to the model in equation (1), and will often suppress arguments such
as x0 for brevity. We will sometimes replace θ with

�

θe,θp

�

, as in stating y
�

θe,θp

�

= M
�

θe,θp

�

or just M
�

θe,θp

�

(dropping the inner parentheses), or even M
��

θe,θp

�

, x0

�

. We will use the
hat symbol (̂ ) to denote an estimated parameter value (θ̂ , for instance), or a simulated model
trajectory, ŷ. The tilde (̃ ) over parameter symbols is reserved for miscellaneous purposes,
particularly in proofs.

Example 1 (Enzymatic Reaction ODE Model). We begin by describing the ODE model for the
calibration circuit we will use in the running example involving the correction of genetic circuit
behavior across extracts. Suppose we have multiple extracts, and consider the constitutive
expression of green fluorescent protein (GFP) in the i-th extract. We model this using an
enzymatic reaction model, which abstracts transcription and translation into a single step,

DG + Enz
kfG−−*)−−
krG

DG:Enz
kc,i
−−→ DG + Enz+G, (2)

where DG is the GFP DNA, Enz is an enzyme species denoting a lumped description of the
machinery that implements the conversion of DNA into protein, DG:Enz denotes a bound complex
of DNA and enzyme, G is the GFP protein. The rate of production of GFP from the bound complex,
kc,i , is assumed to be dependent on the extract (having an i subscript), as is the initial enzyme
concentration Enz0,i , so that the environment specific parameters are θe,i,cal = (Enz0,i , kc,i). The
process specific parameters are θp,cal = (kfG, krG), and are assumed to not depend on the extract.

Let the circuit above be implemented at five different initial concentrations of the GFP DNA,
with the j-th element denoted DG0,j ∈ ( 1 2 5 10 20 ) nM. The chemical reaction system has two
conservation laws,

DG0,j = [DG] + [DG:Enz],

Enz0,i = [Enz] + [DG:Enz],

,

which we use to eliminate [Enz] and
�

DG:Enz
�

from the state space ODE model. The resulting
model yi,cal, j = Mcal

�

(θe,i,cal,θp,cal), x0, j

�

for the i-th extract and j-th initial DNA concentration

4



(assuming mass-action kinetics) is given by

d[DG]

dt
= − kfG

�

Enz0,i −DG0,j + [DG]
�

[DG] + (krG + kc,i)
�

DG0,j − [DG]
�

,

d[G]
dt
= kc,i

�

DG0,j − [DG]
�

,
(3)

where [·] denotes concentration of a chemical species, and the (i, j)-th model’s initial condition is

x0, j =
�
�

DG

�

[G]

�

(0) =
�

DG0,j
0

�

. (4)

Note that the environment specific parameter Enz0,i does not appear in the initial condition vector
because we eliminated [Enz] as a state variable from the model. Had we kept it, the initial condi-
tions would have depended on Enz0,i , which could be emphasized by writing x0, j(θe,i,cal,θp,cal),
or even just x0, j(θi) for simplicity.

The model output trajectories are denoted yi,cal, j , the data trajectories y i,cal, j , and the experiment
Hi, j = (Si , x0,i, j , y i,cal, j). ⋄

Having multiple experimental conditions for the same underlying system or model is a common
occurrence. Modeling data from multiple experimental conditions can be achieved by collecting
individual models, one for each experimental condition, and parametrizing them with a single
set of parameters. That is, we constrain corresponding parameters in the individual models to
take on identical values, a property that is sometimes referred to as ‘hard’ parameter sharing,
or parameter consensus [14]. This is useful when fitting models to data, where the shared
parameters simultaneously fit each individual model to corresponding data. We illustrate this
explicitly in Example 3 below, where we describe it in the context of the calibration-correction
method.

3.2 Parameter Non-Identifiability

In this subsection, we follow Walter and Lecourtier [13] in defining the notion of parameter
non-identifiability

Definition 1. Let M(θA) be a parametrized model, and let M(θB) be a model with the same
structure. M(θA) and M(θB) are said to be output-indistinguishable if

θA, θB ∈ Ω,
y(θA, x0) = y(θB, x0) ∀t ≥ 0, ∀x0 ∈Rn

+.
(5)

⋄

Definition 2. The i th coordinate of θA, denoted θA,i , is structurally globally identifiable if for
almost any θA ∈ Ω, equation (5) has a unique solution for θB,i . ⋄

This means that the i th coordinate of the parameter vector being structurally globally identifiable is
equivalent to the set of parameter points θA in the parameter space that differ in their i th coordinate
and still give output indistinguishable trajectories having measure zero. Stated differently, for an
structurally globally identifiable coordinate, output indistinguishable trajectories almost always
lead to a unique estimate of the coordinate.

Definition 3. The model M(θ ) is called structurally globally identifiable if all its parameters θi ,
for i = 1,2, . . . , qE + qP , are structurally globally identifiable. ⋄

In the absence of global identifiability, multiple points in the parameter space give rise to the same
output behavior. In biological applications, this situation tends to be common due to a limited
number of measurements and a large number of state variables. Our main goal is to demonstrate
that it is not always necessary to achieve global identifiability for every parameter in order
to successfully perform a modeling task (such as transferring parameters for batch variability
reduction). To this end, we shall consider models with parameters that are not structurally globally
identifiable, and thus allow θe and θp to exist in sets of output-indistinguishable parameters,
denoted by E and P respectively.
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4 A Calibration and Correction Methodology for Reducing Process
Variability Across Environments

In this section, we frame variability reduction formally in terms of what we call the data correction
problem, and then define the calibration-correction method as a means of solving this problem.
We illustrate both of these definitions with the example of reducing genetic circuit variability
across extract batches.

4.1 Framing Variability Reduction as the Data Correction Problem

Consider two environments, a reference environment (E1), and a candidate environment (E2).
Let Hi,cal (resp. Hi,test) be an experiment performed with a calibration process Pcal (resp. test
process Ptest) in the environment Ei . Assume that we may pick models Mcal(θcal,i) and Mtest(θtest,i)
corresponding to Hi,cal and Hi,test (respectively), as long as the models are at the same level of
detail (see Remark 3 and Example 2).

Definition 4 (The Data Correction Problem). Let Hi,test = ((Ei ,Ptest), x0,test, y i,test), i = 1, 2, be
the experiments describing the test circuit in the reference and candidate extracts respectively.
Assume that we have the freedom to design and perform calibration experiments Hi,cal, i = 1, 2,
in both the reference and candidate extracts, and collect the resulting data, y1,cal and y2,cal.
Solving the data correction problem involves finding a method that takes as input the tuple
(Mcal, Mtest, y1,cal, y2,cal, y2,test) and returns a trajectory ŷ1,test, such that ŷ1,test = y1,test. ⋄
Remark 1. In general, the data correction problem will only be solvable in the model universe,
where the data will be generated as follows. Let θ e1 and θ e2 be the environment specific
parameters for E1 and E2 respectively. Let θ p,cal and θ p,test be the process specific parameters for
the calibration and test experiments respectively. Then the output data in the model universe are

y i,cal ≜ M cal

��

θ e,i ,θ p,cal

�

, x0,cal

�

,

y i,test ≜ M test

��

θ e,i ,θ p,test

�

, x0,test

�

,

for i = 1, 2. ⋄
Remark 2. With real data, the equality ŷ1,test = y1,test in the definition must be replaced with
the approximate equality ŷ1,test ≈ y1,test, or perhaps merely even a requirement of a decrease in
the distance (under some metric d) between the predicted and reference trajectories relative
to the distance between the reference and candidate extract trajectories, d(y1,test, ŷ1,test) <
εd(y1,test, y2,test) for some user defined parameter ε ∈ [0,1). ⋄
Remark 3. Two models are at the same level of detail if, whenever some mechanism is a part of
both models, it has the same mathematical expressions describing it in each model (see models in
Examples 1 and 2). The reason for this requirement is that we will be using values of parameters
estimated using one model in the other when we attempt to solve the data correction problem.
This also raises the interesting possibility of using models at different levels of detail, as long as
one model can be (model order) reduced to the other. Then, it might be possible to estimate
the parameters in one model, and transform them appropriately before using them in the other
model. This is left as a future direction of investigation. ⋄
Example 2 (The Data Correction Problem for Extract Variability Reduction). Recall from Section 2
that extracts are environments, and genetic circuits are processes. In what follows, we will refer
to reference and candidate extracts, and calibration and test circuits. The data correction problem
involves finding a method for predicting the behavior of the test circuit in the reference extract,
given measurements of the behavior of the calibration circuit in both extracts, and the test circuit
in (only) the candidate extract.

Figure 2 describes the data correction problem schematically using real experimental data
from two extracts and two circuits. The calibration circuit (Figure 2A) comprises the expres-
sion of green fluorescent protein (GFP) under the control of the unrepressed—and therefore
constitutively expressing—pTet promoter. Figure 2C shows the time courses of the expres-
sion of GFP from this circuit in both extracts at various initial DNA concentrations (1 nM to
20 nM), which constitute the calibration data. These data indicate that the circuit expresses at
a higher level in the candidate extract than in the reference extract. We will use the notation
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�

y1,cal,1, y1,cal,2, y1,cal,3, y1,cal,4, y1,cal,5

	

for the 5 trajectories—one for each initial condition—that

constitute the reference extract (E1) calibration data, and similarly
�

y2,cal, j

	5

j=1
for candidate

extract (E2) data.

Figure 2: The data correction problem: given a set of (A) calibration and (B) a test circuits
(processes), (C) measurements of the calibration circuits in both candidate and reference extracts
(environments), models for both the calibration and test circuits, and measurements of the
behavior of the test circuit in the candidate extract (D), predict the test circuit’s behavior in
the reference extract. In (C), the calibration circuit DNA (pTet-GFP) is added at 5 different
concentrations ranging from 1 nM to 20 nM, and GFP is measured for 1.6 hours. In (D), the
reporter pTet-GFP DNA is fixed at 5 nM, while the repressor protein DNA (pLac-tetR) is varied
from 0 to 10 nM (8 total concentrations).

We model this circuit using the enzymatic reaction shown in Example 1, where we define the
environment and process specific parameters, initial conditions and model outputs. One reason
for picking the one-step enzymatic reaction to model protein production is that, while it can model
protein production, it is also simple enough that the joint distribution of its main parameters
can be readily visualized in three dimensions. This allows the theoretical conditions we discuss
in the next section to be visualized graphically (see Section 8.1 and Figure 7D-F), before being
generalized to models with higher dimensional parameter spaces.

The test circuit (Figure 2B) comprises two genes: the tetR repressor gene, whose expression is
controlled by a constitutive promoter (pLac), and the GFP reporter gene, which is controlled by
the TetR-repressible pTet promoter. Expression of the tetR gene leads to the production of the TetR
repressor protein, which decreases how much GFP can be produced by the pTet-GFP DNA. This
can be seen in Figure 2D, where (on the left panel, for instance) the individual trajectories show
lower expression for higher initial concentrations of the pLac-tetR DNA. We fix the concentration
of the repressible pTet-GFP DNA at 5 nM, and vary the concentration of the DNA encoding
the repressor protein, pLac-tetR, from 0 to 10 nM. The individual data trajectories are denoted
�

y1,test, j

	8

j=1
for the reference extract and

�

y2,test, j

	8

j=1
for the candidate extract.

Recall that the models used for calibration and test circuits have to be at the same level of detail
(Remark 3) for the data correction problem to be solved by the calibration-correction method.
To this end, we use the enzymatic reaction to model protein production once again. We model
repression by sequestering free GFP DNA using the (dimerized) TetR protein, resulting in the
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following chemical equations, The test circuit may be modeled by the equations

DT + Enz
kfT−−*)−−
krT

DT:Enz
kc−−→ DT + Enz+ T,

DG + Enz
kfG−−*)−−
krG

DG:Enz
kc−−→ DG + Enz+G,

2T
kf,dim
−−*)−−
kr,dim

T2,

DG + T2

kf,rep
−−*)−−
kr,rep

DG:T2,

(6)

where G and T are are the GFP and TetR proteins, DT is the DNA that codes for the TetR protein,
and T2 is the TetR protein dimer, which sequesters the GFP expressing DNA (DG), repressing
GFP production. The corresponding ODE model is constructed similarly to that in Example 1.
Let DG0 = 5 nM be the initial GFP DNA concentration, Enzi,0 the unknown initial enzyme
concentration (being one of the environment specific parameters), and DT0,j the j-th TetR DNA
initial condition, as in DT0,j ∈ (0 ,0.25 , 0.5 , 0.75 , 1 , 2 , 5 , 10) nM. Note that in the ODE model
of this circuit, there are three conservation laws,

Enzi,0 = [Enz] + [DT:Enz] + [DG:Enz]

DT0,j = [DT:Enz] + [DT]

DG0 = [DG:Enz] + [DG] + [DG:T2],

which can be used to eliminate, say, [Enz], [DT:Enz] and [DG:Enz] from the state space ODE
model. The resulting model, ŷi,test, j = Mtest

�

(θe,i ,θp,test), x0, j

�

, is given by

d[DT]

dt
= − kfT

�

Enzi,0 −
�

DT0,j − [DT]
�

−
�

DG0 − [DG]− [DG:T2]
�

�

[DT]

+ (krT + kc,i)
�

DT0,j − [DT]
�

,

d[DG]

dt
= − kfG[Enz][DG] + (krG + kc,i)

�

DG0 − [DG]− [DG:T2]
�

− kf,rep[DG][T2] + kr,rep[DG:T2]
d[T]
dt
= kc,i

�

DT0,j − [DT]
�

− 2kf,dim[T]
2 + 2kr,dim[T2],

d[T2]

dt
= − kf,rep[DG][T2] + kr,rep[DG:T2]− 2kf,dim[T]

2 + 2kr,dim[T2],

d[DG:T2]

dt
= kf,rep[DG][T2]− kr,rep[DG:T2],

(7)

with initial conditions

x0, j =















�

DG

�

�

DT

�

[G]
[T]
�

T2

�

�

DG:T2

�















(0) =













5 nM
(DT0) j

0
0
0
0













,

and output

yi,test, j(t) = [G] (t).

The process specific parameters are θp,test = (kfG, krG, kfT, krT, kf,rep, kr,rep, kf,dim, kr,dim), and for
extract i, the environment specific parameters are θe,i,cal = (Enz0,i , kc,i). As was the case in
Example 1, we eliminated [Enz] from the state variables, and in doing so, removed the enzyme
initial concentration Enzi,0, and hence the dependence on parameters, from the initial condition
vector, x0, j .
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With these definitions, solving the data correction problem involves finding a method for predict-
ing the behavior of the test circuit in the reference extract given measurements of its behaviour
in the candidate extract, along with the calibration data, and calibration and test circuit models
(see Figure 2). ⋄

4.2 The Calibration-Correction Method as a Solution to the Data Correction Problem

In this section, we define the calibration-correction method, and apply it to the example of
genetic circuit variability reduction described in Example 2. We begin by defining parameter
identification as a set-valued operation on a data-model pair, which allows for multiple parameter
points to fit the model to the data.
Definition 5 (Parameter Identification). Let the set Γθ be the set of all pairs (y, M(θ )) for which
there exists a parameter θ̂ ∈ Ω such that y = M(θ̂ ). Let P(Ω) be the power set of Ω. We define
the parameter identification of the θ coordinates of the model M as an operation IDθ : Γθ → P(Ω),
with IDθ (y, M(θ )) = {θ̂ ∈ Ω | y = M(θ̂ )} ⋄

In the definition above, we have explicitly included θ as a subscript to ID and Γ . This is useful
because we also allow for two methods of identifying parameters only over some subset of
parameter coordinates. The first such method (over θp, suppose) is to identify values over all
the parameter coordinates, and then to project the resulting set down to the coordinates of
interest. This will be denoted by projθp

IDθ (y, M), where θ = (θe,θp), and projθp
is the projection

operator that projects the sets of parameters to the θp coordinates. The second method involves
a conditional version of the parameter estimation operation, and is defined as follows.
Definition 6 (Conditional Identification). Consider the partition θ = (θa,θb) ∈ Ω ⊂Rqa ×Rqb .
Let Γθa |θb=θ̃b

≜ {(y, M) | ∃θa : y = M(θa, θ̃b)}. Then, we define the conditional identification
operator as

IDθa |θb=θ̃b
: Γθa |θb=θ̃b

→ P(projθa
Ω),

with
IDθa |θb=θ̃b

(y, M(θa,θb)) = {θ̂a ∈ projθa
Ω | y = M(θ̂a, θ̃b)}.

⋄

We unclutter the notation by abbreviating IDθa |θb=θ̃b
(y, M(θa,θa)), to IDθa

(y, M(θa, θ̃b)), and
Γθa |θb=θ̃b

to Γθa
.

Next, we define the calibration-correction method as a sequence of steps involving parameter
identification and prediction. Along with stating each step of the method in terms of single
parameter points trajectories, we also give descriptions of the sets of all such points and trajectories.
The definitions of these sets allow for the investigation of whether the non-identifiable parameter
sets can be treated as equivalence classes with respect to this method. In particular, in Section 5,
we will derive a set of conditions for the method to work when arbitrary points in the parameter
sets are picked at the various stages of the method. Figure 3 shows a schematic description of
the three steps of this procedure.
Definition 7 (The Calibration-Correction Method). Consider the data correction problem in the
model universe. We define the calibration-correction method as a sequence of steps that takes
as input the tuple (Mcal, Mtest, y1,cal, y2,cal, y2,test) and returns a prediction of the behavior of the
test process in the reference environment, ŷ1,test. The steps are:

1. Calibration Step. Find environment specific parameters that fit the calibration model to
corresponding data for each of the environments, while sharing a common estimate of
the process specific parameter vector. That is, find θ̂e1,cal and θ̂e2,cal such that the tuple
(θ̂e1,cal, θ̂e2,cal, θ̂p,cal) satisfies y1,cal = Mcal(θ̂e1,cal, θ̂p,cal) and y2,cal = Mcal(θ̂e2,cal, θ̂p,cal) for
some θ̂p,cal. The set of all such environment specific parameter points is constructed as
follows: define the set of all valid (θ̂e1,cal, θ̂e2,cal, θ̂p,cal) tuples

Θ̃cal ≜
¦

(θe1,θe2,θp)
�

� y i,cal = Mcal(θe,i ,θp), i = 1, 2
©

,

and then define the environment specific parameter sets as

Ei,cal ≜ projθe,i
Θ̃cal, i = 1, 2. (8)
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Figure 3: The calibration-correction method (Definition 7). ESP: environment specific parameters.
PSP: process specific parameters. (A) Calibration step: fit the calibration model to calibration
data in both environments jointly (sharing the process specific parameter coordinates), and
project the resulting parameter set to the two sets of environment specific parameter coordinates
to obtain the sets of calibration parameters for each environment, Ei,cal for i = 1, 2. (B) Correc-
tion step 1: Estimate the test circuit process specific parameters (θ̂p2,test), using the candidate
environment (E2) test experiment data, the test process model, and an arbitrary point from the
set of environment specific parameters associated with E2, denoted θ̂e2,cal ∈ E2,cal. (C) Correction
step 2: Use an arbitrary point θ̂e1,cal ∈ E1,cal from the set of reference extract environment spe-
cific parameters, along with the process specific parameter point estimated in correction step
1, θ̂p2,test, in the test process model to generate a prediction of the reference extract trajectory,
ŷ1,test = Mtest

�

θ̂e1,cal, θ̂p2,test

�

.

2. Correction Step One. Identify process specific parameters of the test process in the
candidate environment while holding the environment specific parameters at the value
estimated at the previous step. That is, find θ̂p2,test such that y2,test = Mtest(θ̂e2,cal, θ̂p2,test).
The set of all such points is given by

P′2,test ≜
⋃

θ̂e∈E2,cal

IDθp |θe=θ̂e

�

y2,test, Mtest

�

θe,θp

�

�

. (9)

3. Correction Step Two. Predict test process behavior in the reference environment using
the process specific parameters estimated in the first correction step, and environment
specific parameters estimated in the calibration step. That is, generate the prediction
ŷ1,test = Mtest(θ̂e1,cal, θ̂p2,test). The set of all predictions that can be generated is given by

Y1 ≜
⋃

θ̂e∈E1,cal

⋃

θ̂p∈P′2,test

ŷ1(θ̂e, θ̂p), (10)

where individual predictions are given by ŷ1(θ̂e, θ̂p) = Mtest(θ̂e, θ̂p) for θ̂e ∈ E1,cal and
θ̂p ∈ P′2,test.

⋄
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Before describing this with an example, we describe how multiple experimental conditions
(environments or initial conditions) may be handled.
Example 3 (Collecting Models and Parameter Consensus). Consider once again the setup in
Example 1, with two extracts E1 and E2 and five GFP DNA concentrations (Figure 2A, C).
There are ten output trajectories—one for each combination of extract and DNA concentration—
denoted y i,cal, j for the i-th extract and j-th initial condition, and ten corresponding models,
yi,cal, j = Mcal

�

(θe,i,cal,θp,cal), x0, j

�

. The resulting data-model pair is a collection of these individual
data trajectories and models, and involve a common set of shared parameters, as follows,

�

ycal, Mcal

�

θe1,cal,θe2,cal,θp,cal,
�

x0,1,1, x0,1,2, . . . , x0,2,5

�� �

(11)

=











































�

y1,cal,1), Mcal

�

(θe1,cal,θp,cal), x0,1,1

��

,
�

y1,cal,2), Mcal

�

(θe1,cal,θp,cal), x0,1,2

��

,
...

�

y1,cal,5), Mcal

�

(θe1,cal,θp,cal), x0,1,5

��

,
�

y2,cal,1), Mcal

�

(θe2,cal,θp,cal), x0,2,1

��

,
...

�

y2,cal,5), Mcal

�

(θe2,cal,θp,cal), x0,2,5

��











































. (12)

Estimating θe,i,cal = (Enz0,i , kc,i), and θp,cal = (kfG, krG) from data, or predicting outputs given
these parameters involves treating their repeated occurrences in equation (12) as the same
parameters used multiple times. As mentioned earlier, this process of sharing parameters across
related models is called hard parameter sharing or parameter consensus.

Note that the more general case of multiple different calibration circuits is handled via a straight-
forward extension of the idea of collecting corresponding models and allowing for parameter
sharing across them. ⋄

Next, we illustrate the calibration-correction method on the data in the our case study. The
overall methodology is illustrated in the schematic in Figure ??.
Example 4 (The Calibration-Correction Method for Genetic Circuit Variability Reduction). In
this example, we apply the calibration-correction method to solve the data correction problem in
Example 2, where our objective is to predict the behavior of a given test circuit in a reference
extract, given its behavior in a candidate extract.

The data and models we use in the calibration step are those described in Example 3.
In the calibration step (Figure ??A-B), we estimate all points θ =

�

θe1,cal,θe2,cal,θp,cal

�

=
�

Enz0,1, kc,1, Enz0,2, kc,2, kfG, krG

�

∈ Θ̃cal ⊂ R6
+ that simultaneously fit the ten models (two ex-

tracts and five initial DNA concentrations) to their corresponding data trajectories, with the
parameter sharing scheme described in Example 3.

An estimate of the set Θ̃cal may be constructed using Bayesian inference via Markov chain Monte
Carlo (MCMC), which samples from the posterior distribution of parametersP(θe1,cal,θe2,cal,θp,cal |
ycal, Mcal) by drawing parameter points from a prior distribution,2 and accepting points proba-
bilistically, depending on how far the corresponding model predictions are from observed data.3, 4

Figure 4B shows pairwise projections of the set of parameters (Θ̃cal) computed using MCMC,
with parameter sharing as described in Example 3 above, and fits shown in Figure 4A.

The model, parameters and initial conditions for the test circuit were described in detail in
Example 2. Recall that the first correction step involves estimating its process specific parame-

2We use a uniform distribution within a large hypercube in parameter space as our prior—the so-called
uninformative prior.

3See Singhal et al. [14] for a toolbox that enables MCMC with hard parameter sharing.
4Approximate Bayesian computation is another tool for computing posterior distributions of parameters,

and may be used to approximate Θ̃cal. See also Hori and Murray [15] for yet another tool.
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Figure 4: The calibration-correction method (Definition 7) on the data shown in Figure 2. (A)
Calibration step model fits. Solid lines: experimental data for the constitutive expression circuit
measured in two extracts, E1 and E2. Dotted lines and shaded region: mean and standard
deviations of 500 trajectories simulated using point drawn from the posterior distribution, which
approximatesΘcal. (B) Pairwise projections of the posterior distribution, split into two corner plots
corresponding to the two extracts. (C) Correction steps 1 and 2 on the TetR repression test circuit
data. Solid lines: experimental data. Purple: reference extract E1 trajectories. Green: candidate
extract E2 trajectories. Rows of subplots correspond to different initial tetR DNA concentrations
(initial conditions). Dotted lines and shaded regions: mean and standard deviations of simulated
trajectories (using parameters drawn from the relevant distributions, see main text). The columns,
starting from the left, are: test circuit data in the two extracts, correction step one, the second
correction step, and the improvement from applying process specific parameter conditioning to
the calibration-correction method.
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ters θp,test = (kfG, krG, kfT, krT, kf,rep, kr,rep, kf,dim, kr,dim) ∈ P2,test by fitting the test model behavior
ŷ2,test = Mtest

�

(θe2,θp,test), x0

�

to the test circuit’s behavior in the candidate extract (over all
initial conditions simultaneously, see Example 3), while holding its environment specific pa-
rameters at an arbitrary point in the candidate extract’s environment specific parameter set,
θe2,cal = (Enz0,2, kc,2) ∈ E2,cal.

The model fits are shown as dotted green curves and shaded regions (mean, s.d.) in the second
column in Figure 4C. Fixing the environment specific parameters to a point in E1,cal and drawing
500 points from P2,test to generate the corrected trajectories implements correction step two,
and the results are shown as the purple dotted curve and shaded region in the third column in
Figure 4C. We see in the third column that the purple dotted curves move closer to the ground
truth (solid purple lines), but the variance in the predicted trajectories increases, possibly due
to parameter covariation (described in Section 6). Process specific parameter conditioning (see
Definition 13 and Proposition 2 below) at the calibration step helps to correct for this, and the
resulting predicted reference extract trajectories are shown as purple dotted lines (and shaded
regions) in the fourth column

We compute the degree of variability reduction achieved by our procedure on this test circuit
data. We define two metrics to measure the variability reduction. Both metrics take values in
[0,∞), with a value of 0 corresponding to perfect correction, a value of 1 corresponding to no
correction on average, and values larger than 1 corresponding to the predicted trajectories being
further from the true reference trajectories than the original candidate trajectories are.

The first metric measures the the ratio of the sum of the deviations between the corrected and
reference trajectories to the sum of the deviations between the original reference and candidate
trajectories. We can write the metric as,

R1 =

∑nIC
j=1 ∥ ŷ1,test, j − y1,test, j∥2
∑nIC

j=1 ∥y2,test, j − y1,test, j∥2
,

where the sum is taken over the nIC experimental conditions (which, in this case, are the first
four tetR DNA concentrations, as shown in Figure 4). For our dataset, we compute this value to
be R1 = 0.42.

The second metric computes, summed over the nIC initial conditions, the ratio of the deviation
between the corrected trajectory and the reference extract trajectory, and the deviation between
the original candidate extract trajectory and the reference extract trajectory. It then takes the
mean of these individual ratios to give a score for the average correction. It is defined as

R2 =
1

nIC

nIC
∑

j=1

∥ ŷ1,test, j − y1,test, j∥2
∥y2,test, j − y1,test, j∥2

,

and gives a value of 0.48 when computed for our dataset.

⋄

The version of the calibration step defined above is straightforward to implement computationally
(using inference tools that allow for hard parameter sharing between models, see for instance
the consensus MCMC tools described in Singhal et al. [14]), since the sets Ei,cal, for i = 1, 2, are
simple projections computed from the estimated set.

We also give an equivalent definition here that allows for the estimation of the parameters
for the two extracts separately, followed by a restriction procedure that enforces agreement
between the process specific parameters estimated in the two extracts. We start with esti-
mating the environment- and process specific parameter sets for individual extracts, Θi,cal ≜
IDθ
�

y i,cal, Mcal(θ)
�

, i = 1, 2, and then compute the set of process specific parameters where
these agree, Pcal ≜ projθp

Θ1,cal ∩ projθp
Θ2,cal. Finally, the environment specific parameter sets

are generated by restricting both Θi,cal by Pcal,

Ei,cal ≜
¦

θe

�

� ∃θp ∈ Pcal : (θe,θp) ∈ Θi,cal

©

, i = 1, 2.

The fact that the sets Θi,cal, i = 1, 2, are estimated separately can be useful in cases where the
dimension of the spaces θe and θp live in (that is, qE and qP) are large enough that estimating
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Θ̃cal ∈R2qE+qP might be much more difficult compared toΘi,cal ∈RqE+qP . The trade-off here is that
intersections and restrictions of sets represented by point clouds can be computationally difficult
in high dimensional spaces. Finally, the lemma in Appendix B.1 establishes the equivalence of
this definition to the one given in equation (8).

Note that the set P′2,test in Definition 7 is a subset of the larger set

P2,test ≜projθp
IDθ (y2,test, Mtest).

Indeed, P′2,test is obtained from P2,test by only keeping the points whose corresponding θe coordinate
values were in the calibration set E2,cal. We use P′2,test because in the first correction step, we
identify θp only after fixing the value of θe to an arbitrary point within E2,cal.

5 Identifiability Conditions

In this section, we show that structural global identifiability is not necessary for the calibration-
correction method to solve the data correction problem. This will be stated as a corollary of
the main result of this section (Theorem 1), which gives conditions on the non-identifiable
parameters under which the calibration-correction method solves the data correction problem.
The main idea is that since correction only needs to be applied to the output variables, and not
to the full state vector, the parameters only need to be ‘identifiable enough’ to reconstruct the
output trajectories.

This notion is closely related to the sets of output-indistinguishable parameters being equivalence
classes with respect to the initial conditions, inputs and outputs of a model. While these sets may
be equivalence classes with respect to individual data-model pairs, some additional restrictions
need to be placed on these sets if they are to be treated as equivalence classes with respect to the
calibration-correction method.

5.1 The Model Universe and Failure Conditions

Our analytical results will be stated and proved in a virtual model universe, where artificial data
y are generated using nominal models M with known nominal parameter values θ . That is, in
the model universe, we identify H = (S, x0, y) with y = M(θ , x0).

We will also make a model correctness assumption, denoted M = M , which states that in the
model universe, the models we use to estimate parameters from the data are the very models
used to generate the data. In particular, both models will have the same dynamical equations, f ,
and output functions, h, specifying them. Working in a model universe, along with this additional
correctness assumption, allows us to look at the interaction of non-identifiability with our method
in isolation, that is, without also having to be concerned with whether our models are good
models of the system that generated the data. Important issues associated with model correctness
or the use of approximate models (that arise due to model-order reduction, for instance) are
left as future work. Furthermore, it is worth explicitly stating that even though a single nominal
parameter point is used to generate the output trajectory, the non-identifiability of parameters
when their identification is attempted using the output trajectory and the nominal models arises
because of the structure of the dynamics function f and that of the output function h. Thus,
when stating and proving our main results in Section 5, we will always use single points to specify
nominal parameter values, even when we can only identify sets of parameter values from the
output trajectories.

The identifiability results in this section are developed in the context of this idealized model
universe. In this setting, there are two places at which the calibration-correction method can fail.
Avoiding these failure conditions forms the basis of our proofs below.

Definition 8 (Failure Condition 1). Failure condition one occurs if a parameter identification step
is attempted when no parameter exists such that the model fits the data. This means that the
data-model pair (y, M) under consideration is not in the domain Γ of the operator ID. In terms
of the set based formulation of the calibration-correction method, this failure condition occurs if
it occurs for any point in the set. ⋄
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For example, if it is possible to find an θ̂e2,cal in the calibration step such that in the first correction
step, there is no θ̃p that satisfies y2,test = Mtest(θ̂e2,cal, θ̃p), then the parameter estimation step
fails at this point. In terms of the set based formulation of equation (9), this failure condition
occurs if it occurs for any point θe in E2,cal.

Definition 9 (Failure Condition 2). Failure condition two occurs if correction step two is able to
produce a trajectory not equal to the true trajectory, that is, ŷ1,test ̸= y1,test. In terms of the set Y1
defined in equation (10), this means that Y1 contains at least one element that is not equal to
y1,test. ⋄

This condition occurs when the calibration-correction method constructs parameter points not
lying on the true parameter manifold. This can happen in, for instance, correction step two,
where we combine parameter coordinates from E1,cal and P′2,test to generate a prediction. As we
see, this is useful for showing contradiction in the results in this section and the next.

As noted in Remark 2, with real data, this idealized setting must be relaxed to account for noise
in the data. This can be done by replacing equality with some notion of nearness. While we
consider noisy data in the examples in this study, their theoretical investigation involves notions
of practical identifiability, and is beyond the scope of the current study.

Theorem 1 (Parameter consistency). Consider the data correction problem under the model universe
assumption, the calibration-correction method, and the sets Θ̃cal, E1,cal, E2,cal and P′2,test as defined in

Definition 7. Define Θi,test ≜ IDθ
�

y i,test, M test(θ )
�

for i = 1, 2. Then, the conditions,

Θ̃cal ̸= ;, (13)
E2,cal ⊆ projθe

Θ2,test, (14)

E1,cal × P′2,test ⊆ Θ1,test, (15)

are necessary and sufficient for the calibration-correction method to solve the data correction problem.

Proof. See Appendix A

We may give some physical interpretations of the conditions (13-15). To do this, we first note
that condition (15) implies (see Lemma 3 in Appendix B.2)

E1,cal ⊆ projθe
Θ1,test, (16)

P′2,test ⊆ P′1,test, (17)

where P′1,test is defined in a similar way to P′2,test,

P′1,test ≜
⋃

θ̂e∈E1,cal

IDθp |θe=θ̂e

�

y1,test, Mtest

�

θe,θp

�

�

.

Conditions (13) and (16) may be interpreted to mean that the calibration experiments must be
more informative about the environment specific parameters than the test circuit experiments.
This follows from the fact that the sets of output-indistinguishable environment specific parameters
obtained from the calibration step are subsets of the corresponding sets from the test circuits,
projθe

Θi,test.

Condition (17) says that the process specific parameter sets for the test circuit estimated in each
extract, if estimated by first fixing the environment specific parameters to values obtained at the
calibration stage, must agree. Agreement here is defined to be unidirectional, with one set being
a subset of another. This is only because the correction being performed is from the candidate
extract to the reference extract. If bidirectional correction (Corollary 2, below) were required,
then we would have equality in Condition (17).

Finally, Condition (15) says that the environment- and process specific parameter coordinates
in the set Θ1,test can only covary outside E1,cal × P′2,test, that is, all the points within this set must
belong to Θ1,test. Covariation is defined in Section 6.
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Corollary 1 (Sufficiency of Structural Global Identifiability). Structurally globally identifiable
models are sufficient for the calibration-correction method to solve the data correction problem in
the model universe.

Proof. See Appendix A

Corollary 2 (Bidirectional Correction). To be able to correct the test data from either extract to the
other requires that:

Θ̃cal ̸= ;,
Ei,cal ⊆ projθe

Θi,test, i = 1, 2,

E1,cal × P′2,test ⊆ Θ1,test,

E2,cal × P′1,test ⊆ Θ2,test.

Proof. The proof is a simple union of the sets of conditions implied by Theorem 1 for each
direction of correction.

In the bidirectional scenario, the parameter ‘agreement’ condition P′2,test ⊆ P′1,test discussed in the
text following Theorem 1 gets transformed into P′2,test = P′1,test.

Next we discuss the case of correcting the calibration data itself. This will be important in the
next section when we examine the effect of a phenomenon called parameter covariation on the
calibration-correction method. There, we will prove that a modified version of the method is
able to solve the problem at least for this case, even in the presence of parameter covariation.
Corollary 3 (‘Test = Calibration’ Case). Consider the data correction problem for the case where
the test data and models are the same as the calibration data and models, that is, y i,test = y i,cal and
M test = M cal for i = 1, 2. Furthermore, let Θi,cal ≜ IDθ

�

y i,cal, Mcal(θ )
�

for i = 1, 2, and

P′2,cal ≜
⋃

θ̃e∈E2,cal

IDθp

�

y2,cal, Mcal

�

θ̃e,θp

��

.

Then, the conditions

Θ̃cal ̸= ;, (18)
E2,cal ⊆ projθe

Θ2,cal, (19)

E1,cal × P′2,cal ⊆ Θ1,cal, (20)

are necessary and sufficient for the calibration-correction method to solve this problem.

Proof. Simply specialize the conditions in Theorem 1 to this case.

6 Environment- and Process Specific Parameter Covariation Causes the
Calibration-Correction Method to Fail

In this section, we describe covariation, and show that it causes the calibration-correction method
to fail. We then discuss an improvement to the method that addresses this issue. We start with
defining a device that will be useful for taking slices of parameter sets.
Definition 10 (Cutting Plane). Consider the space of parameters Rq, the vector θ ∈Rq parti-
tioned into two sets of coordinates θ = (θa,θb) ∈ Rqa ×Rqb and the subspaces A≜ Rqa × {0}
and B ≜ {0} ×Rqb corresponding to the θa and θb coordinates respectively. Let θ̃a ∈ A. Then,
we denote the cutting plane generated by shifting the origin of B to (θ̃a, 0) with the notation
cutθb

(θ̃a). ⋄
Definition 11 (Parameter Covariation). Consider the space of parameters Rq and the vector
θ ∈ Rq partitioned into two sets of coordinates θ = (θa,θb) ∈ Rqa ×Rqb . Consider some set
of parameters Θ ⊆ Rq. If there exist θ̃a1, θ̃a2 ∈ projθa

Θ such that projθb

�

Θ ∩ cutθb
(θ̃a1)
�

̸=
projθb

�

Θ ∩ cutθb
(θ̃a2)
�

, then Θ is said to have parameter covariation of its θb coordinates with
respect to its θa coordinates. ⋄
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Figure 5: Covariation and ‘thin’ covariation. (A) The absence of covariation in a set of parameters
corresponds to a Cartesian product condition being met (see Lemma 1). (B) An example of a
‘minimal’ violation in the covariation condition of Definition 11. (C) In general, covariation will
have more general deviations in shape from the ‘rectangular’ shape implied by the Cartesian
product. See Section 8 and Figure 7 for examples of covariation found in mass-action kinetics
models used in synthetic biology. (D) The covariation in the θa coordinates of Θ is ‘thin’ with
respect to the θb coordinates (Definition 12). The definition of thin covariation is directional:
here, the covariation in the θb coordinates is not thin with respect to the θa coordinates, due to
the defining condition being violated at the region marked in red (that is, at θ̃a).

We will often abbreviate parameter covariation to just covariation, and say that parameter
coordinates can covary.

Lemma 1. Let θ = (θa,θb) ∈ Θ ⊆Rq be a partition of the coordinates of Rq. Then, the set Θ has
covariation of its θb coordinates with respect to its θa coordinates if and only if projθa

Θ×projθb
Θ ̸=

Θ.

Proof. See Appendix A

Corollary 4. The set Θ has covariation of its θb coordinates with respect to its θa coordinates if and
only if it has covariation of its θa coordinates with respect to its θb coordinates.

Proof. The proof of Lemma 1 can be repeated with straightforward modifications (essentially
swapping the roles of θa and θb) to show the equivalence of the condition projθa

Θ×projθb
Θ ̸= Θ

to the set Θ having covariation of its θa coordinates with respect to its θb coordinates.

This equivalence will allow us to refer to sets having covariation with respect to a given partition.
Specifically, we will consider Θ having covariation with respect to the (θe,θp) partition.

Next, we show that in the presence of covariation, the calibration-correction method is unable to
solve the data correction problem even in the case when the test data are the calibration data
themselves. In particular, we will assume that the restriction of Θ1,cal to E1,cal × projθp

Θ2,cal has
covariation with respect to the (θe,θp) partition.

Proposition 1. Consider the ‘Test = Calibration’ case of the data correction problem described in
Corollary 3, along with the definitions of the various sets given there. Assume the conditions

Θ̃cal ̸= ;, (21)

P′2,cal ⊆ projθp
Θ1,cal, (22)

Ei,cal ⊆ projθe
Θi,cal, i = 1, 2, (23)

hold, but the set

Θ′1,cal ≜ Θ1,cal ∩
�

E1,cal × projθp
Θ2,cal

�

has covariation in its θe coordinates with respect to its θp coordinates. Then, the calibration-correction
method fails to solve this problem.
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Proof. See Appendix A

7 A Modification via Process Specific Parameter Conditioning Addresses
Covariation

Next, we define a specific type of covariation, which we call thin covariation, and show that a
modification to the calibration-correction method is able to solve the data correction problem for
the ‘Test = Calibration’ case when the process specific parameter coordinates covary in this way
with respect to the environment specific parameter coordinates. In Section 8.1, we will show
that even the simplest models show non-identifiability with this type of covariation.

Figure 6: (A) Intuition behind the proofs of how thin covariation causes a failure of the calibration-
correction method in the ‘Test = Calibration’ case, and how process specific parameter condition-
ing restores its ability to solve the data correction problem (Propositions 1 and 2).

Definition 12 (Thin Covariation). Let Θ ⊂ Rq be a set of parameters and let (θa,θb) ∈ Rq be
a partition of the coordinates of Rq. If Θ covaries with respect to this partition and if for all
θ̃b ∈ projθb

Θ, we have
�

�cutθa
(θ̃b)∩Θ
�

� = 1, then we say that the covariation of the θa coordinates
of Θ is thin with respect to the θb coordinates. ⋄

We note that if Θ ≜ IDθ (y , M(θ)), then the condition that for all θ̃b ∈ projθb
Θ, we have

�

�cutθa
(θ̃b)∩Θ
�

�= 1 is equivalent to the θa coordinates of the model M(θa,θb) being structurally
globally identifiable for each fixed θb. Thus we see that this type of covariation is essentially
a statement about the some coordinates being conditionally structurally globally identifiable,
despite covarying with respect to the remaining coordinates.

Definition 13 (Process Specific Parameter Conditioning). Consider the sets Θi,cal ≜
IDθ
�

y i,cal, Mcal(θ)
�

, i = 1, 2 and let θ̃p ∈ projθp
Θ1,cal ∩ projθp

Θ2,cal. Then, we define pro-
cess specific parameter conditioning as a modification to the calibration step in which the sets
Ei,cal ≜ projθe

�

cutθe

�

θ̃p

�

∩ Θi,cal

�

for i = 1, 2. ⋄

Proposition 2. Consider the sets Θi,cal ≜ IDθ
�

y i,cal, Mcal (θ )
�

for i = 1, 2, and the partition
θ =
�

θe,θp

�

. Assume that the Θi,cal have thin covariation in their θp coordinates with respect
to their θe coordinates. Then, the calibration-correction method with process specific parameter
conditioning is able to solve the data correction problem for the ‘Test= Calibration’ case of Corollary 3.

Proof. See Appendix A
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8 Computational Investigation of Covariation and Process Specific
Parameter Conditioning

In this section we investigate the effect of covariation on the calibration-correction method
computationally, and show that process specific parameter conditioning helps reduce the error
introduced by such covariation.

The approach will be to generate artificial data using the models in Equations (2) and (6) with a
fixed set of parameters, and then to use these same models to perform the calibration-correction
method. In this way, we implement the model universe and model correctness assumptions of
Section 5.1, enabling us to study the effects of structural non-identifiability in isolation.

8.1 The ‘Test = Calibration’ case of Corollary 3

First, we demonstrate that even the simplest models show non-identifiability and thin covariation
in their process specific parameter coordinates with respect to their environment specific param-
eter coordinates, and this causes the calibration-correction method to fail to correct even the
calibration data (‘Test = Calibration’ case). We also show that with process specific parameter
conditioning, this is avoided due to the mechanics of the proof of Proposition 2.

We begin by generating artificial calibration data for extracts E1 and E2 using the constitutive
expression circuit (Figure 7A), with the model in equation (2), and the parameters in Table 1 in
Appendix C. The process specific parameters used were the same for the models in both extracts,
while the environment specific parameters differed for the two extracts. The true trajectories
are shown as dotted curves in Figure 7B, C. We have added a small amount of noise to these for
easier visualization of overlapping trajectories; however the trajectories used as model universe
data in the calibration-correction method do not contain this added noise. The calibration step
was performed with kfG = 5 fixed at its true value, reducing the number of parameters in the
model to three (process specific parameter krG, and environment specific parameters [Enz] and
kc), allowing for the visualization of the joint distribution of the parameter samples that result
from performing MCMC. This visualization is the most direct method of seeing the existence of
non-identifiability and of thin covariation in the parameters.

The fitting of the model to the data (Figure 7B, C) in the calibration step results in an estimate of
the joint distribution of the parameter vector (θe1,θe2,θp) ∈ Θ̃cal. The three dimensional scatter
plots of empty blue circles in Figure 7D, E show the results of this estimation marginalized to
the coordinates (θe1,θp) = ([Enz]1, kc1, krG) and (θe2,θp) = ([Enz]2, kc2, krG) for the two extracts.
We also fit a surface to the scattering of these points (translucent green surface plot), which helps
visualize the fact that these points essentially lie on a two dimensional manifold within the three
dimensional space of parameters, and that this surface displays thin covariation. The calibration
step concludes with the projection of the points onto the environment specific parameter axes
for E1 and E2, as shown by the filled-in blue circles on the horizontal log kc–log [Enz] planes in
Figure 7D, E.

The red point in Figure 7D shows the result of the first correction step, where the environment
specific parameters ([Enz], kc) were fixed to one of the points estimated in the calibration step,
and the process specific parameter was estimated. We see that the process specific parameter
value estimated is such that the full parameter point (θ̂e2, θ̂p) lies in the joint environment- and
process specific parameter set (red point lifted up to the green surface). The fitted trajectories
from this stage are shown in Figure 7G.

We observe from the position of the red point in Figure 7E that picking an arbitrary point from the
set of environment specific parameters, and using the process specific parameters from the first
correction step leads to a point that does not lie on the joint environment- and process specific
parameter surface for extract E1. The corresponding predicted trajectory and the true behavior
of the artificial data are shown in Figure 7H, and do not match.

Figure 7F, I show the result of repeating the procedure with process specific parameter conditioning
applied at the calibration step. In particular, the process specific parameter was fixed at the value
that was estimated at the first calibration step (lifted red point in Figure 7D), though any value
in the set projθp

Θ1,cal ∩ projθp
Θ2,cal is allowed. The key insight here is that now the environment
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Figure 7: In silico demonstration of the effect of thin covariation and process specific parameter
conditioning for the ‘Test = Calibration’ case. (A) Schematic showing the constitutive expression
circuit (green fluorescent protein produced constantly). Legend shows what the lines in the
subsequent panels mean. (B - C) Artificial data (dotted lines) generated using known fixed
parameters for two extracts and the fitted trajectories (dashed lines) resulting from the calibration
step. A small amount of noise was added to the dotted lines for easier visualization, since they
overlapped almost perfectly with the fitted trajectories. See main text for details on how the data
were generated. The dashed lines and shaded regions were the means and standard deviations of
simulated trajectories using parameter points drawn from the estimated posterior distributions.
(D, E) The blue points suspended in R3 are the parameter sets estimated at the calibration step,
jointly between the two extracts (that is, in the 5 dimensional parameter space comprising one
process specific parameter and two environment specific parameters per extract). The translucent
green surfaces in both panels have been fitted to these points. They denote the set of all parameter
points that fit extract E1 and extract E2 data to the model, and visually depict thin covariation
in the process specific parameter (log krG) coordinates with respect to the environment specific
parameter coordinates. Continued below.
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Figure 7: Continued. The set of environment specific parameters estimated at the calibration
stage are generated by projecting the points to the horizontal planes (log kc–log [Enz] planes
in each panel), and are depicted as the dark blue points on these planes. (D) also shows the
result of correction step 1, with the red point on the log kc–log Enz plane showing the arbitrary
point θ̂e2 ∈ E2,cal that was picked, and the corresponding red point lifted to the green surface
showing the value of the estimated process specific parameter θp ≡ krG that was estimated. (E)
shows correction step 2 without process specific parameter conditioning, whereby combining an
arbitrary point θ̂e1 ∈ E1,cal with the process specific parameter θ̂p from (D) does not necessarily
lead to a point (θ̂e1, θ̂p) that lies on the green surface (red point). In (F), with process specific
parameter conditioning, this situation is rectified, and the red point lies on the green surface. (G)
The process model fits involved in correction step one. (H) The predicted trajectories lie away
from the true trajectories because the red point in (E) does not lie on the green surface. (I) The
predicted trajectories in correction step 2 with process specific parameter conditioning match the
true trajectories.

specific parameter sets are much smaller, and due to the covariation being thin in the process
specific parameter coordinates, in correction step one, the environment specific parameters can
only be picked so that the very process specific parameter value that was fixed gets estimated.
Subsequently, in correction step two, the only environment specific parameter values that can be
picked are such that when they are used with this process specific parameter value, the resulting
point lies in the set of parameters Θ1,cal that fit the true E1 data to the model. Indeed, in Figure 7I,
we see that this leads to the desired correction.

8.2 Application of Process Specific Parameter Conditioning in the General Setting

We conclude this section by demonstrating that in the more general setting of the test circuit
being different from the calibration circuit, process specific parameter conditioning can still help
achieve significant improvements in the performance of the method (Figure 8). The calibration
data used were the same as in Section 8.1, and the test circuit model (Figure 8A) used was the
repression circuit, modeled by Equations (6), with parameters used to generate the artificial
data given in Table 1 (Appendix C). As before, dotted curves denote artificial data with a small
amount of noise added for ease of visualization. The calibration stage with and without process
specific parameter conditioning was identical to that in Section 8.1. To reduce the dimension of
the space that the parameter inference algorithm would need to explore, we fixed the forward
rates kfG, kfT,kf,dim, and kf,rep, and limited the process specific parameters to only the reverse
rates, krG, krT,kr,dim, and kr,rep. In this setting, performing the first correction step gave a set of
parameter estimates for the process specific parameters, and the resulting fits to the E2 test circuit
data are shown in Figure 8B. Performing the second correction step without process specific
parameter conditioning led the expected incorrect prediction of the corrected trajectories (Failure
Condition 2), as shown in Figure 8C. Finally, applying process specific parameter conditioning to
the calibration step led to good prediction of the circuit behaviour at correction step 2, as shown
in Figure 8D.

9 Summary and Discussion

Calibrating and correcting environment specific effects is an important problem in disciplines
as varied as aeronautics and synthetic biology. Model-based methodologies can be used in
conjunction with calibration experiments to learn environment specific parameters, which in
turn can be used to correct for differences in a system’s behavior across environments [1].

The models used in these methodologies can often possess parameters that cannot be uniquely
determined given the observable data (initial conditions, inputs and output trajectories), even
in the absence of observation noise. This property is called structural non-identifiability in the
control literature, and is dependent solely on the structure of a model’s equations [13]. The
presence of structural non-identifiability often limits the use of models in applications such as
system composition or variability reduction. We have studied the interaction of this phenomenon
with a general calibration methodology, and derived necessary and sufficient conditions under
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Figure 8: The effect of process specific parameter conditioning on the correction of novel test
circuit data (that is, of data not seen at the calibration stage). (A) The test circuit was the
repression of the pTet promoter, modeled by Equations (6). The pTet-GFP DNA was held fixed
at 60 a.u., while the constitutive TetR DNA was varied between 2 a.u. and 8 a.u.. The dotted
curves were the artificial experimental data generated using the parameters in Table 1. The
calibration step was performed as in Figure 7, both with and without process specific parameter
conditioning. The first correction step leads to the fits shown in (B), and the second correction
step leads to the poor corrections shown in (C). When process specific parameter conditioning is
employed at the calibration step, the second correction step performs well, as shown in (D).

which it does not hinder such methodologies. In the following subsections, we review some key
aspects of our results, and discuss noteworthy generalizations and future directions.

9.1 Correcting Genetic Circuit Behavior Across Extracts

To experimentally demonstrate the calibration methodology and show the implications of the
main theoretical results, we chose an application from the field of synthetic biology, where models
of genetic ‘circuits’ (networks) tend to have a large number of non-identifiable parameters. In this
field, cell-free ‘extracts’ are becoming a useful environments for prototyping such genetic circuits.
Indeed, the intrinsic variability between the batches of extracts places limitations on our ability
to compare results from different batches. Users currently plan their investigations so that their
experiments may be completed before the batch of extract is depleted, and are therefore limited
in the number of results they are able to compare under identical experimental conditions.

The methodology is organized into two steps, a calibration step, where a set of calibration
circuits is used to estimate extract (environment) specific parameters of a particular extract,
and a correction step, in which the calibrations are used to tranform a novel circuit’s behavior
from what it was in a given extract into what it would have been in a reference extract. The
idea is that whenever a new extract batch is made, a predefined set of calibration experiments
may be performed on that extract to measure its environment specific parameters. These, along
with similarly estimated parameters for the reference extract may be used to transform any data
collected in the new extract into the reference extract form, and thus be made directly comparable
with all other data also similarly transformed.
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9.2 Correcting Across Topologically Distinct Environments

We have developed this method for normalizing behavior across extract batches that are assumed
to differ only in the values of the parameters of the reaction network for a given circuit, and not
in the (graph) topology of the networks modeling the extracts. The framework here should be
applicable to any scenario where only such parametric differences exist. One example of this
situation is when correcting for run-to-run variability between experiments, which would require
calibration experiments to be performed alongside each run.

The more general situation of correcting data between topologically different environments
can occur when predicting circuit behavior in cells (in-vivo) from measurements in extracts
(in-vitro), or when correcting for variability between different bacterial strains or microorganism
species. In this more general setting, as long as the modeling framework and environment
specific parameters are chosen carefully enough to capture most of the environment specific
influences on the circuit, then the process specific parameters should be largely independent of
the environment they are estimated in. The appropriateness of the choice of the level of detail in
the modeling, the partition of parameters into environment specific versus process specific and
the choice of calibration experiments in each of the different environments may be achieved in
an iterative, empirical, and hypothesis driven manner.

9.3 Parameter Consistency Conditions

We have also developed theoretical results for when this methodology is expected to work in
the presence of parameter non-identifiability. Due to the large discrepancy between the size of
biochemical networks and the number of molecular species that can be measured, parameter non-
identifiability is a ubiquitous property of these reaction network models. The general prescription
in modeling studies [16] is to perform more experiments to eliminate non-identifiability, reduce
the order of the model by lumping parameters and equations, or to fix some parameters to
effectively reduce the number of non-identifiable parameters. However, in many cases, more
experiments may not be feasible due to cost, time or technological constraints. Model order
reduction may not be desirable if, for example, certain mechanisms in the model need to be kept
separate (one example being the explicit modeling of nucleotide binding and consumption during
transcription and translation to keep track of resources [14]). The fixing of some parameters,
while reducing the number of effective parameters may not remove non-identifiability completely.

The key point behind our results is that since we are trying to correct the trajectories of the
very species that we are able to measure, the sets of values the non-identifiable parameters can
take could perhaps be treated as equivalence classes with respect to their usage in the modeling
framework. This is a general idea that, even though developed and demonstrated in this specific
calibration framework, should apply to a broader class of applications of parametric models, as
long as those applications depend on using only the observable outputs. One future direction
of this work would be to develop these ideas at this level of generality, starting with the linear
systems framework found in control theory.

9.4 Other Future Directions

We may identify a few other directions of investigation. First, it might be possible to generalize
condition 15 in Theorem 1 to a result which gives conditions under which part models with
non-identifiability can be combined to predict the behavior of an entire system. That is, to derive
conditions under which models can be composed into larger models in a way that the combined
model is still predictive of real behavior, despite structural non-identifiability in the part models.
In the simplest case, this could be a simple Cartesian product condition, though it is likely that
this would be too restrictive, since covariation between the parameters of different parts may
exist, requiring a more careful analysis. For example, we may have to prescribe precisely which
parameters must be identified, and to what extent, and which parameters may be fixed (analogous
to process specific parameter conditioning above), before the remaining non-identifiability does
not hinder the model’s ability to predict system behavior.

Second, it has been noted in the control and systems biology literature that the sets of output-
indistinguishable parameters find their most natural description as differentiable manifolds
[17, 18]. These manifolds foliate the parameter space, with the individual leaves of the foliation
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corresponding to different sets of outputs (for a given set of inputs and initial conditions). Classical
nonlinear control [19, 20, 21] provides a rich theory for understanding these manifolds, and it
should be possible to use this framework characterize the relationship between the geometric
structure of these manifolds and the different choices of inputs, output variables, and initial
conditions. The understanding of such relationships could be useful for both the variability
reduction problem (this work) or the more general system composition problem: beginning with
the parameter consistency conditions, we might be able to design experiments (that is, decide on
which outputs to measure, what initial conditions to test, and what inputs to apply) that reduce
the non-identifiability so that the consistency conditions are met.

Finally, we may wish to generalize these results to the case when there is noise in the data, the
parameter sets are replaced by probability distributions, and notions of practical identifiability
[22] are incorporated into our analysis.
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A Proofs of Main Results

In this section, we provide detailed proofs of the main results of this study.

Proof of Theorem 1. Solving the data correction problem using the calibration-correction method
involves avoiding failure conditions one and two described in Definitions 8 and 9. Avoiding
failure condition one wherever it may occur ensures that the method can be implemented in the
first place, and avoiding failure condition two means that the method returns the desired result.

The necessity of condition (13) follows from the fact that if Θ̃cal = ;, then there does not exist
a vector (θe1,θe2,θp) such that y i,cal = Mcal(θe,i ,θp) for i = 1, 2, leading to failure condition

one at the calibration step. We note that in the model universe, where Mcal(θ) = M cal(θ) and
y i,cal = M cal(θe,θp), condition (13) always holds.

Next, we prove the necessity of E2,cal ⊆ E2,test, where E2,test ≜ projθe
Θ2,test. Assume that there exists

an θ̃e ∈ E2,cal such that θ̃e /∈ E2,test. Thus, there does not exist a θ̃p such that Mtest((θ̃e, θ̃p)) = y2,test.
Since the operator IDθp |θe=θ̃e

is only defined on the set {(y, M) | ∃θp : M((θ̃e,θp)) = y}, we see
that the map IDθp |θe=θ̃e

(y2,test, Mtest(θe,θp)) is not well defined, leading to failure condition one
at the first correction step.

We prove the necessity of condition (15) as follows. Assume that there exists an (θ̃e, θ̃p) ∈
E1,cal×P′2,test such that (θ̃e, θ̃p) /∈ Θ1,test. Since we use points θ̂e ∈ E1,cal and θ̂p ∈ P′2,test to generate

the prediction ŷ1,test in the second correction step, it is possible that θ̂e = θ̃e and θ̂p = θ̃p.
Furthermore, since Θ1,test is the set of all points (θe,θp) that give the correct trajectory y1,test, we
have the possibility that ŷ1,test ̸= y1,test. This is the second failure condition.

Finally, sufficiency is a simple consequence of the fact that conditions (13-15) address both the
points in the method where failure condition one could be met, and the point in the method where
failure condition two could occur. Explicitly, condition (13) allows the calibration step to avoid
failure condition one, condition (14) allows correction step one to avoid failure condition one,
since it implies that for all θ̃e ∈ E2,cal, there exists a θ̃p such that (θ̃e, θ̃p) ∈ Θ2,test. Condition (15)
enables correction step two to avoid failure condition two, since it implies that for all θ̃e ∈ E1,cal

and for all θ̃p ∈ P′2,test we have that y1,test = Mtest(θ̃e, θ̃p), implying that the set of all possible
predicted trajectories only has the correct trajectory in it, Y1 = {y1,test}.

Proof of Corollary 1. Recall from Remark 1 that in the model universe, the data are generated by
nominal parameters, θ e1, θ e2, θ p,cal, θ p,test. We observe that since the models are structurally
globally identifiable, these parameters uniquely fit the model to the data, and therefore the sets
in conditions (13-15) only have single entries, leading to these conditions being trivially satisfied:

Θ̃cal = {(θ e1,θ e2,θ p,cal)} ≠ ;,

E2,cal = {θ e2} ⊆ projθe
{(θ e2,θ p,test)}= projθe

Θ2,test,

E1,cal × P′2,test = {θ e1} × {θ p,test} ⊆ {(θ e1,θ p,test)}= Θ1,test.

Proof of Lemma 1. First, we prove the ‘only if’ direction. Covariation implies that there exists a
point θ̃b ∈ projθb

Θ such that

θ̃b ∈
�

projθb

�

Θ ∩ cutθb
(θ̃a1)
�

△
�

projθb

�

Θ ∩ cutθb
(θ̃a2)
�

,

where △ is the symmetric difference set operation. It further implies that there exists a point
θ̃a ∈ {θ̃a1, θ̃a2} ∈ projθa

Θ such that (θ̃a, θ̃b) /∈ Θ. Thus, projθa
Θ× projθb

Θ ̸= Θ.

Next, we prove the ‘if’ direction. Let (θ̃a, θ̃b) ∈ projθa
Θ × projθb

Θ be such that (θ̃a, θ̃b) /∈ Θ.
Since θ̃b ∈ projθb

Θ, there exists a θ̃a2 ∈ projθa
Θ such that (θ̃a2, θ̃b) ∈ Θ. Thus we have θ̃b ∈

projθb

�

Θ ∩ cutθb
(θ̃a2)
�

but θ̃b /∈ projθb

�

Θ ∩ cutθb
(θ̃a1)
�

, which proves the assertion.
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Proof of Proposition 1. Condition (22) and the fact that for the ‘Test = Calibration’ case, P′2,cal =
projθp

Θ2,cal, together imply that projθp
Θ′1,cal = P′2,cal. Condition (23) implies projθe

Θ′1,cal = E1,cal.
Covariation implies that projθe

Θ′1,cal × projθp
Θ′1,cal ≠ Θ

′
1,cal. Thus, the proper subset relation

Θ′1,cal ⊊ E1,cal × P′2,cal holds, and therefore there exists (θ̃e, θ̃p) ∈ E1,cal × P′2,cal such that (θ̃e, θ̃p) /∈
Θ′1,cal ⊆ Θ1,cal. This implies that E1,cal × P′2,cal ⊈ Θ1,cal, which violates condition (20).

Proof of Proposition 2. Let θ̃p ∈ projθp
Θ1,cal ∩ projθp

Θ2,cal and θ̃e2 ∈ E2,cal ≜

projθe

�

cutθe

�

θ̃p

�

∩ Θ2,cal

�

. We note that the sets projθp

�

cutθp

�

θ̃e2

�

∩ Θ2,cal

�

and

IDθp
(y2,cal, Mcal

�

θ̃e2,θp

�

) are equal by definition. Now, pick an arbitrary point

θ̃p
′ ∈ projθp

�

cutθp

�

θ̃e2

�

∩ Θ2,cal

�

. It follows that θ̃p
′
= θ̃p from the fact that

θ̃p ∈ projθp

�

cutθp

�

θ̃e2

�

∩ Θ2,cal

�

and that the element in
�

�cutθa
(θ̃b)∩Θ
�

� = 1 is unique.
Thus, the only possible process specific parameter value that can be returned by the first
correction step is θ̃p.

Next, we look at the second correction step. Pick an arbitrary θ̃e1 in E1,cal and recall that
E1,cal ≜ projθe

�

cutθe

�

θ̃p

�

∩ Θ1,cal

�

. Since the point
�

θ̃e1, θ̃p

�

∈ Θ1,cal, we have that y1,cal = ŷ1,cal ≜
M(θ̃e1, θ̃p), and failure condition two is avoided.

B Supplementary Lemmas

In this section, we give further results that help clarify some issues mentioned in the main text,
and provide details on the experimental and computational methodology.

B.1 Equivalence of the Two Definitions of the Calibration Step

In this section, we prove two identities that establish the equivalence of the two definitions of
the calibration step given in Definition 7 and the directly following it.
Lemma 2. Let Θ̃cal, Θ1,cal and Θ2,cal be as defined in Definition 7 and the text following it. Then,
the identities

projθp
Θ̃cal ≡ projθp

Θ1,cal ∩ projθp
Θ2,cal, (24)

projθe,i
Θ̃cal ≡
¦

θe

�

� ∃θp ∈
�

projθp
Θ1,cal ∩ projθp

Θ2,cal

�

: (θe,θp) ∈ Θi,cal

©

, i = 1, 2, (25)

hold.

Proof. First, we prove (24) using a series of equivalences. Let θ̃p ∈ projθp
Θ̃cal. This is equivalent

to

∃θe1,θe2 : (θe1,θe2, θ̃p) ∈ Θ̃cal (26)

⇔∃θe1,θe2 : y i,cal = Mcal(θe,i , θ̃p), i = 1,2 (27)

⇔ (θe,i , θ̃p) ∈ Θi,cal, i = 1,2 (28)

⇔ θ̃p ∈ projθp
Θ1,cal ∩ projθp

Θ2,cal, (29)

which proves the assertion.

Next, we prove (25) for θe1 by showing that the left and right hand sides are subsets of each
other. The proof for the θe2 case is similar. Denote the set on the left hand side with L, and the
one on the right with R. Let θ̃e1 ∈ L = projθe1

Θ̃cal. Then, ∃θ̃e2, θ̃p such that (θ̃e1, θ̃e2, θ̃p) ∈ Θ̃cal,
which implies θ̃p ∈ projθp

Θ̃cal and y1,cal = Mcal(θ̃e1, θ̃p). By the identity (24), we have that

θ̃p ∈ projθp
Θ1,cal ∩ projθp

Θ2,cal and (θ̃e1, θ̃p) ∈ Θ1,cal, which shows that L ⊆ R.

We conclude the proof by showing that R ⊆ L. Let θ̃e1 ∈ R, which means that there exists
a θ̃p ∈ projθp

Θ1,cal ∩ projθp
Θ2,cal such that y1,cal = Mcal(θ̃e1, θ̃p). Furthermore, since θ̃p ∈
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projθp
Θ2,cal, there also exists an θ̃e2 such that y2,cal = Mcal(θ̃e2, θ̃p). Together these imply that

(θ̃e1, θ̃e2, θ̃p) ∈ Θ̃cal, which gives θ̃e1 ∈ projθe1
Θ̃cal, proving the assertion.

B.2 Equivalence of the Two Process Specific Parameter Subset Conditions Given in the
Text following Theorem 1

The Cartesian product condition given in equation (15) implies two further conditions, which we
state in Lemma 3 below. The first of these follows simply by projecting both sides of equation (15)
onto the environment specific parameter coordinates. The second condition, on the other hand,
is stronger than simply projecting (15) onto the process specific parameter coordinates. This
condition states that the process specific parameter points generated at the first correction step,
P′2,test, must be a subset of the set of process specific parameter points generated by fitting y1,test

to the model when the environment specific parameter points are restricted to be in the set E1,cal.

Lemma 3. Condition (15), which states that E1,cal × P′2,test ⊆ Θ1,test, implies that

E1,cal ⊆ projθe
Θ1,test, (30)

P′2,test ⊆ P′1,test, (31)

where P′1,test is defined in a similar way to P′2,test,

P′1,test ≜
⋃

θ̂e∈E1,cal

IDθp |θe=θ̂e

�

y1,test, Mtest

�

θe,θp

�

�

.

Proof. Condition (30) follows simply by applying the projθe
operator to both sides of condition

(15). To prove condition (31), we note that condition (15) implies that for an arbitrary θ̃p ∈ P′2,test,

we have that for all θ̃e ∈ E1,cal, the model fits the data, y1,test = Mtest(θ̃e, θ̃p). This in turn implies
that

θ̃p ∈
⋃

θ̂e∈E1,cal

IDθp |θe=θ̂e

�

y1,test, Mtest

�

θe,θp

�

�

= P′1,test. (32)

Thus, P′2,test ⊆ P′1,test.

C Methods

C.1 TX-TL Extract and Buffer Preparation

Preparation and execution of TX-TL was according to previously described protocols [23].

Briefly, the cells were grown to an OD600 of 1.5, pelleted and washed. They were then lysed using
a french press, and centrifuged to remove cell debris. The supernatant was incubated at 37◦C for
80 min, and then centrifuged to remove endogenous nucleic acids. The supernatant was dialyzed
against a pH8.2 buffer containing Mg-glutamate, K-glutamate, Tris, and DTT. Finally, the extract
was centrifuged and the supernatant was flash-frozen in liquid nitrogen and stored at -80◦C.

The buffer had the following components: 9.9 mg/mL protein, 9.5 mM Mg-glutamate, 95 mM
K-glutamate, 0.33 mM DTT, 1.5 mM each amino acid except leucine, 1.25 mM leucine, 50 mM
HEPES, 1.5 mM ATP and GTP, 0.9 mM CTP and UTP, 0.2 mg/mL tRNA, 0.26 mM CoA, 0.33 mM
NAD, 0.75 mM cAMP, 0.068 mM folinic acid, 1 mM spermidine, 30 mM 3-PGA, 2% PEG-8000.
Both the extract and buffer were stored at -80◦C in separate tubes, with enough volume for seven
reactions per tube.

C.2 Cell Extract Experiment

A 384-well microplate (Nunc) was used for the experiments, and the appropriate concentra-
tions and volumes of DNA and inducers to be used in each reaction were calculated using the
spreadsheets provided in [23]. The extract and buffer were thawed for 20 min on ice, mixed
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in the prescribed ratios, and pipetted into each well being used in the microplate, which was
also placed on ice. The DNA was then added to each well according to the spreadsheet using an
Echo 525 liquid handler robot. All the pipetting was done to avoid bubbles, the plate was sealed,
and spun at 4000g for 45s at 4◦C to distribute the mix evenly at the bottom of the wells and
remove any bubbles that might have been introduced. The plate was placed in a Synergy H1/MF
microplate reader (Biotek). Settings used for deGFP measurement were: excitation/emission
485 nm/515 nm, at gain 61, measured every 8 min for 8 hours.

D Additional Details Associated with the Models in Section ??

D.1 Calibration Circuit

D.2 The Test Circuit

Then, the first correction step involves inferring the distribution of θp,test =
(kfG, krG, (kfT, krT, kf,rep, kr,rep, kf,dim, kr,dim) from the set of data-model pairs in the candidate
extract E2, over the different initial conditions,















�

y2,test,1), Mtest

�

(θ̂e2,cal,θp,test), x0,2,1

��

,
�

y2,test,2), Mtest

�

(θ̂e2,cal,θp,test), x0,2,2

��

,
�

y2,test,3), Mtest

�

(θ̂e2,cal,θp,test), x0,2,3

��

,
�

y2,test,4), Mtest

�

(θ̂e2,cal,θp,test), x0,2,4

��

,
�

y2,test,5), Mtest

�

(θ̂e2,cal,θp,test), x0,2,5

��

,
�

y2,test,6), Mtest

�

(θ̂e2,cal,θp,test), x0,2,6

��

,
�
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�

(θ̂e2,cal,θp,test), x0,2,7

��

,
�
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�

(θ̂e2,cal,θp,test), x0,2,8

��















. (33)

The second correction step involves predicting the the behavior of the system in the reference
extract E1 at all eight initial conditions. Since a distribution for θp,test is generated at correction
step 1, we sample 500 points from this distribution, and plot the mean and standard deviation of
the predictions due to these samples,
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


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. (34)

Note that even though the fitting and the prediction in correction steps 1 and 2 were done on all
eight values of DT0, we only show the results for the first four of these conditions in Figure 4C.
The remaining trajectories are very close to 0, being repressed more strongly than even the
0.75 nM trajectory in the bottom row of Figure 4C, and are suppressed for brevity.

Table 1: Parameters used to generate the artificial data in Figures 7 and 8.

Type Parameter Extract 1 Value Extract 2 Value Model(s)
Env. specific Total [Enz] 100 200 Mcal, Mtest
Env. specific kc 0.012 0.024 Mcal, Mtest
Proc. specific kfG 5 5 Mcal, Mtest
Proc. specific krG 300 300 Mcal, Mtest
Proc. specific kfT 5 5 Mtest
Proc. specific krT 300 300 Mtest
Proc. specific kf,dim 20 20 Mtest
Proc. specific kr,dim 10 10 Mtest
Proc. specific kf,rep 20 20 Mtest
Proc. specific kr,rep 10 10 Mtest
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E Details Associated with In-Silico Experiments

F Key Synthetic Biology Terms

In this section, we provide a brief primer of concepts from synthetic and molecular biology that
are useful for understanding the examples described in this work.

• Central Dogma: Describes the flow of genetic information within cells, and states that
DNA is used to produce RNA (transcription), which is then used to produce proteins
(translation).

• Promoter: Regions of DNA located upstream of a the gene sequence, which encodes
proteins. Being upstream, these regions are accessed before the gene during transcription,
and regulating this access can regulate whether the protein is expressed. Specifically,
promoters serve as docking sites for RNA polymerase, the enzyme responsible for
transcription, and for transcription factors, which are proteins that bind to them and
can regulate the recruitment of RNA polymerase for transcription.

• Transcription Factor: Transcription factors are proteins that bind to specific DNA se-
quences within promoters. They act as molecular switches that activate or repress gene
expression. They do this by influencing the recruitment of RNA polymerase and other
components of the transcriptional machinery to the promoter, thereby controlling the
rate of transcription. By engineering the interactions between transcription factors and
promoters, synthetic biologists can design precise regulatory circuits. The repressor
discussed in this study is the transcription factor TetR, repressing the promoter pTet.

• Plasmid: Small, circular DNA molecules that exist separate from the chromosomal DNA
in many bacteria and other organisms. They are commonly used as carriers for the
introduction of foreign genes into cells. Creating and introducing plasmids into living
cells is a time consuming process, making the design of genetic circuits difficult, and
motivating the use of cell extracts as a prototyping platform.

• Cloning: A process in which a desired gene or DNA sequence is inserted into a plasmid
using restriction enzymes and ligases (also a type of enzymes). The newly created
‘recombinant’ plasmid can then be introduced into a host cell, where it replicates and
expresses the inserted gene or set of genes.

• Genetic circuit: Engineered networks of genes and regulatory elements (such as pro-
moters) that allow cells to perform specific tasks. Genetic circuits are composed of the
so-called ‘transcriptional units’, which are essentially modules comprising a promoter, a
gene (also known as a coding sequence), and other regulatory elements. Because the
coding sequence can encode transcription factor proteins, which in turn can regulate
the promoters in other transcriptional units, transcriptional units can be composed in a
modular fashion to create complex circuits.

Traditionally, designing and testing genetic circuits required cloning genetic circuits onto plasmids.
This is costly and time consuming for several reasons. First, cloning genetic circuits often involves
the assembly of DNA fragments using techniques such as restriction enzyme digestion, ligation,
and polymerase chain reaction (PCR). These processes can be labor-intensive and error prone.
Furthermore, once the genetic circuit is cloned into a plasmid, it needs to be introduced into a
host organism, typically bacteria. This process can also fail, leading to a failed cloning attempt.
For each iteration of genetic circuit design, this entire process must be repeated, making the
design of genetic circuits using plasmids a prohibitively expensive and time consuming process.

Cell extracts, also known as cell-free systems, are an alternative that allow the iterative design
of genetic circuits without the need to assemble plasmids and express them within cells. They
allow the use of linear DNA fragments that can be assembled without the need for cloning, and
introduced into extracts with ease, allowing for the genetic circuit encoded by the linear DNA
fragments to be ‘implemented’. The concentrations of the linear DNA fragments added to the
extract can be finely controlled, allowing for fine control on various parts of the circuit, a feature
that their plasmid counterparts introduced into living cells do not possess. A fuller discussion of
these considerations can be found in the literature [9, 24, 12].
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