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Abstract— The phenomenon of parameter (structural) non-
identifiability can pose significant challenges to the use of
parametrized dynamical models. We demonstrate that, for
the case of models being used to transform data across
environments, it is possible to derive conditions under which
the presence of structural non-identifiability does not hinder
our modeling objective. We also show that when the non-
identifiability has a certain structural feature called (thin)
covariation, these conditions are violated, and the trans-
formation methodology must be modified. We demonstrate
these results on the problem of correcting batch effects in
cell extracts, which are used as rapid prototyping platforms
in synthetic biology.

I. INTRODUCTION

Batch or environment specific effects on the measured
behavior of a system can be a major confounding factor
in data intensive workflows. Often, these environment spe-
cific effects may be corrected using calibration measure-
ments from the individual environments. When correcting
for the environment specific effects is more complex than
a simple scaling of the data, model-based calibration
methodologies must be used. These methodologies, how-
ever, often depend on estimating model parameters, which
in turn are often (structurally) non-identifiable.

In this paper, we derive conditions under which such
non-identifiability does not hinder the use of the models
for performing the calibrations and the data transforma-
tions. Our results rely on the fact that the set of structurally
non-identifiable parameters is an equivalence class with
respect to the input-output behavior of a system [1], and
the data being transformed involves only the input-output
behavior of the model, not the trajectories of the full set
of state variables.

We begin by defining some notation (Section II) and
framing the variability reduction in terms of the so called
data correction problem (Section III). We then define
the calibration-correction method, named after a similar
method developed to correct wind tunnel variability [2],
which solves this problem (Section III). Next, we show
that under certain consistency conditions, the presence of
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parameter non-identifiability does not hinder our method-
ology (Section IV). We also show that these consistency
conditions may be violated when the non-identifiability
possesses a certain structural feature called covariation,
and end with a modification to the methodology that
addresses this phenomenon (Section V).

II. NOTATION AND PRELIMINARY IDEAS

A. Systems, Experiments, Models and Parameters

We consider systems S= (E,P) described as a combina-
tion of an environment E and a process P, and define an
experiment H = (S, x0, y) to be the execution of a system
under initial conditions x0 and output measurements y,
where the bar denotes the assumption that experimental
data reflects the ground truth. Time dependent inputs
may be included without significant change to the results
derived in this paper, and are suppressed for simplicity.

The parameter vector θ of a model M associated with
a given experiment will be partitioned into environment
specific parameter (ESP) coordinates e ∈ RqE , and process
specific parameter (PSP) coordinates p ∈ RqP . We do not
restrict these parameters to be in the positive orthant, since
any positive parameters may be log transformed.

The partition of θ = (e, p) into ESPs and PSPs may be
made using the following guidelines: ESPs are parameters
associated primarily with components that are present in
the system regardless of the the process implemented.
In the biological example discussed in this paper, these
components are biochemical species, like enzymes and
DNA. PSPs are parameters associated with components
that may no longer be present in the system when the
process is changed.

Experiments are modeled using initialized parametrized
models with the equations of the general form

ẋ = f (x ,θ ),
y(θ , x0) = h(x ,θ ), x(0) = x0(θ ).

(1)

Here x , x0 ∈ Rn
+, the solutions are assumed to exist for

all t ≥ 0, the parameter vector symbol is θ = (e, p) ∈
Ω ⊆ RqE+qP , where Ω is the set of all parameter values
of interest. The output is denoted y(θ , x0) ∈ Rr . The
functions f and h are assumed to be analytic vector
fields with respect to x in some neighborhood of any
attainable x , and time dependence of the vector fields can
be modeled by including t in the state variables [3]. We
will use the shorthand y(θ , x0) = M(θ , x0) to refer to the
model in Equation (1), and will often suppress arguments
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such as x0 for brevity. We will sometimes replace (θ )
with (e, p), as in stating y (e, p) = M (e, p) or just M (e, p).
We will use the hat symbol (̂ ) to denote an estimated
parameter value (θ̂ , for instance), or a simulated model
trajectory, ŷ. The tilde (̃ ) over parameter symbols is
reserved for miscellaneous purposes, particularly in proofs.
Example 1. Consider a simple model of protein production,
given by the chemical equation

dna+ enz
kf−−"#−−
kr

dna:enz
kc−−→ dna+ enz+ prot. (2)

The corresponding ODE model is given by

d[enz]
dt

= − kf [enz][dna] + (kr + kc)[dna:enz]

d[prot]
dt

= kc[dna:enz]

d[dna:enz]
dt

= − d[dna]
dt

= −d[enz]
dt

(3)

and initial conditions [enz](0) = enz0, [dna](0) = dna0,
[dna:enz](0) = 0 and [prot](0) = 0.

Here, we may choose to define the initial enzyme
concentration and the reaction catalysis rate kc as the
environment specific parameters, and the remaining pa-
rameters (kf and kr) as the process specific parameters.
This partition will, in general, be application domain
specific, and require expert knowledge and empirical trial-
and-error. △

B. The Model Universe and Model Correctness Assumptions
Our analytical results will be stated and proved in a

virtual model universe, where artificial data y are gen-
erated using nominal models M with known nominal
parameter values θ . I.e., in the model universe, we identify
H = (S, x0, y) with y = M(θ , x0).

We will also make a model correctness assumption,
denoted M = M , which states that the models we use
to estimate parameters from the data are the very mod-
els used to generate the data. The model correctness
assumption allows us to isolate the interaction of non-
identifiability with our method. Issues associated with
model correctness or the use of approximate models (that
often arise due to model order reduction) have implica-
tions on the practical application of these results, and
form an important direction for future work. Furthermore,
we emphasize that the nominal parameter points generate
nominal trajectories, which can in turn be used to compute
the sets of output indistinguishable parameters, of which
the nominal parameters are members.

In this paper, we will use the model universe assumption
to refer to both assumptions.

C. Parameter Non-Identifiability
In this section, we follow Walter and Lecourtier [3] in

defining the notion of structural non-identifiability.

Definition 1 (Output-Indistinguishability). Let M(θA) be
a parametrized model, and let M(θB) be a model with the

same structure. M(θA) and M(θB) are said to be output-
indistinguishable if

θA, θB ∈ Ω,
y(θA, x0) = y(θB, x0) ∀t ≥ 0, ∀x0 ∈Rn

+.
(4)

Definition 2 (Structural Global Identifiability (parame-
ter)). The i th coordinate of θA, denoted θA,i , is structurally
globally identifiable (SGI) if for almost any θA ∈ Ω, Equa-
tion (4) has a unique solution for θB,i .

Intuitively, for an SGI coordinate, output indistinguish-
able trajectories almost always lead to a unique estimate
of the coordinate.

Definition 3 (Structural Global Identifiability (model)).
The model M(θ ) is called structurally globally identifiable
(SGI) if all its parameters θi , for i = 1, 2, . . . , qE + qP , are
SGI.

In the absence of global structural identifiability, multi-
ple points in the parameter space give rise to the same
output behavior. In biological applications for example,
this situation tends to be common due to a limited number
of measurements and a large number of state variables
[4]. Our main goal is to demonstrate that it is not al-
ways necessary to achieve global identifiability for every
parameter to achieve a modeling objective such as data
transformation. To this end, we shall consider models with
non-SGI parameters, and thus allow e and p to exist in sets
of output-indistinguishable parameters, denoted by E and P
respectively.

III. THE CALIBRATION-CORRECTION METHODOLOGY

In this section, we frame the problem of transforming
data across environments as the so called data correction
problem. We also define a stepwise methodology, which
we call the calibration-correction method, that attempts
to solve this problem.

Consider two environments, a reference environment
(E1), and a candidate environment (E2). Let Hi,cal (resp.
Hi,test) be an experiment performed with a calibration
process Pcal (resp. test process Ptest) in the environment
Ei . Assume that we may pick models Mcal(θcal,i) and
Mtest(θtest,i) corresponding to Hi,cal and Hi,test (respec-
tively), as long as the models are at the same level of
detail (see Remark 1 and Example 2). Then, solving the
data correction problem (DCP) involves taking the tuple
(Mcal, Mtest, y1,cal, y2,cal, y2,test) and returning a trajectory
ŷ1,test, such that ŷ1,test = y1,test.

Remark 1. Two models are at the same level of detail if,
whenever some mechanism is a part of both models, it has
the same mathematical expressions describing it in each
model. The reason this requirement is present is that we
will be using values of parameters estimated using one
model in the other when we attempt to solve the DCP.
This also raises the interesting possibility of using models
at different levels of detail, as long as one model can
be (model order) reduced to the other. Then, it might
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be possible to estimate the parameters in one model,
and transform them appropriately before using them in
the other model. This is left as a future direction of
investigation. ⋄
Example 2. Consider a data correction problem encoun-
tered in the field of synthetic biology. Here, cell extracts are
used as prototyping platforms for studying the dynamics
of genetic circuits (networks of interacting DNA, RNA,
proteins, and other elements from molecular biology),
just like wind tunnels are used to prototype airplane
designs. These cell extracts must be produced in batches
by extracting the gene expression machinery from lysed
bacteria, a process that has considerable batch dependent
variability. The transformation of a test circuit (process)
data from a candidate extract (environment) to a reference
extract can be stated as a data correction problem.

For our example, we set the calibration experiment to be
the simple protein expression system shown in Example 1,
and the test experiment to comprise a transcription factor
mediated repression of a reporter protein (such as green
fluorescent protein, GFP), modeled as

dnarep + enz
kf ,rep−−−"#−−
kr,rep

dnarep:enz
kc−−→ dnarep + enz+ rep,

dnaprot + enz
kf ,prot−−−"#−−−
kr,prot

dnaprot:enz
kc−−→ dnaprot + enz+ prot,

2rep
kf ,dim−−−"#−−−
kr,dim

rep2,

dnaprot + rep2

kf ,seq−−"#−−
kr,seq

dnaprot:rep2,

(5)
where rep and prot are the repressor and reporter pro-
teins respectively, and are produced by the same mech-
anism as in Example 1. The DNA species, the bound
complex species, and the binding rates are now labeled
by appropriate subscripts. The third reaction models the
dimerization of the repressor, and the fourth reaction
models the sequestration (i.e., repression) of the reporter
DNA. Here, the ESPs are the same as the ones in model
of the calibration experiment in Example 1: the protein
production catalysis rate kc , and the initial concentration
of the enzyme, enz0. The remaining parameters are the
PSPs: kf ,rep, kr,rep, kf ,prot , kr,prot , kf ,dim, kr,dim, kf ,seq and
kr,seq. The corresponding ODEs are created in a similar
fashion to those in Example 1.

This example also illustrates what we mean by models
at the same level of detail. The production of protein from
DNA is modeled as a single step enzymatic reaction in
both the calibration process of Example 1 and the test
process in this example. This allows for the estimates of
the ESP parameters (kc and enz0) from the calibration
experiment to be used with the test experiment data,
as will be required when we attempt to solve the data
correction problem.

With these definitions, the data correction problem is
illustrated in Figure 1. Here, experimental data corre-

sponding to the calibration and test gene circuits in two
different E. coli extracts is shown (at various initial con-
centrations of the protein coding DNA). The desired data
transformation involves transforming the test circuit data
from the candidate extract (E2) to the reference extract
(E1), and is shown by the arrow. △
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Fig. 1. The data correction problem involves the transformation of
the behavior of a test process (ii, a tetR repression circuit here), from a
candidate environment to a reference environment. We have the freedom
to design and implement a set of calibration experiments (Hi,cal, i = 1, 2)
on the two environments (i, constitutive expression of GFP here), and
collect the resulting data (y1,cal and y2,cal). The data was collected in
TX-TL, using a variation of the protocols found in [5].

Remark 2. In general, the DCP will only be solvable in the
model universe, where y i,cal ! M cal(ei , pcal) and y i,test !
M test(ei , ptest), i = 1, 2. ⋄
Remark 3. With real data, the equality ŷ1,test = y1,test must
be replaced with the approximate equality ŷ1,test ≈ y1,test,
defined in some sense. For instance, we may require
that d(y1,test, ŷ1,test) <

1
2 d(y1,test, y2,test), where d is an

appropriate metric. ⋄
Next, define the set valued parameter identification

operator that will be used for studying the effect of non-
identifiability on our methodology.

Definition 4 (Parameter Identification). Let the set Γθ
be the set of all pairs (y, M(θ )) for which there exists
a parameter θ̂ ∈ Ω such that y = M(θ̂ ). Let P(Ω) be
the power set of Ω. We define the parameter identification
of the θ coordinates of the model M as an operation
IDθ : Γθ → P(Ω), with IDθ (y, M(θ )) = {θ̂ ∈ Ω | y = M(θ̂ )}

In the definition above, we have explicitly included θ
as a subscript to ID and Γ . This is useful because we
also allow for methods of identifying parameters only
over some subset of parameter coordinates. The first such
method (over p, suppose) is to identify values over all the
parameter coordinates, and then to project the resulting
set down to the coordinates of interest. This will be
denoted by projp IDθ (y, M), where θ = (e, p), and proj
is the projection operator. The second method involves a
conditional version of the parameter estimation operation,
and is defined as follows.
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Definition 5 (Conditional Parameter Identification). Con-
sider the partition θ = (θa,θb) ∈ Ω ⊂ Rqa × Rqb . Let
Γθa |θb=θ̃b

! (y, M) | ∃θa : y = M(θa, θ̃b). Then, we define
the conditional ID operator as IDθa |θb=θ̃b

: Γθa |θb=θ̃b
→

P(projθa
Ω), with IDθa |θb=θ̃b

(y, M(θa,θb)) = {θ̂a ∈ projθa
Ω |

y = M(θ̂a, θ̃b)}.
Remark 4. We unclutter the notation by abbreviating
IDθa |θb=θ̃b

(y, M(θa,θa)), to IDθa
(y, M(θa, θ̃b)), and Γθa |θb=θ̃b

to Γθa
. ⋄

Next, we define the calibration-correction method as a
sequence of steps involving parameter identification and
prediction. Along with stating each step of the method
in terms of single parameter points or trajectories, we
also give descriptions of the sets of all such points and
trajectories. The definitions of these sets allow for the
investigation of how structural non-identifiability of pa-
rameters affects this method’s ability to solve the DCP.

Briefly, the method involves the following. First, cali-
bration experiment data is fit to corresponding models to
find the ESPs for each environment. Next, the ESPs for the
candidate environments are fixed in the test model, and
the PSPs for this model are estimated using corresponding
data. Finally, a corrected trajectory is generated by sim-
ulating the test model using these PSPs, along with the
ESPs for the reference environment.

Definition 6 (The Calibration-Correction Method). Con-
sider the DCP in the model universe. We define the
calibration-correction method as a sequence of steps that
takes the tuple (Mcal, Mtest, y1,cal, y2,cal, y2,test) and returns
a prediction ŷ1,test. The steps are:

1) Calibration Step. Find ê1,cal and ê2,cal such that
(ê1,cal, ê2,cal, p̂cal) satisfies y1,cal = Mcal(ê1,cal, p̂cal) and
y2,cal = Mcal(ê2,cal, p̂cal) for some p̂cal. The sets of all
such ESP points are found by projecting the set

Θ̃cal !
!
(e1, e2, p)
"" yi,cal = Mcal(ei , p), i = 1, 2

#
,

onto the corresponding ESP coordinates:

Ei,cal ! projei
Θ̃cal, i = 1, 2. (6)

2) Correction Step One. Identify p̂2,test such that y2,test =
Mtest(ê2,cal, p̂2,test). The set of all such points is

P′2,test !
⋃

ê∈E2,cal

IDp|e=ê

%
y2,test, Mtest

&
e, p
'(

. (7)

3) Correction Step Two. Generate the prediction ŷ1,test !
Mtest(ê1,cal, p̂2,test). Note that the set of all such pre-
dictions is

Y1 !
⋃

ê∈E1,cal

⋃

p̂∈P′2,test

ŷ1(ê, p̂), (8)

with individual predictions ŷ1(ê, p̂)! Mtest(ê, p̂).

Remark 5. The version of the calibration step defined
above is straightforward to implement computationally. It
involves a single estimation step, followed by projections.

It is also possible to give an equivalent definition that in-
volves estimating the parameters for the two environment
separately, which can be useful for reducing the dimension
of the spaces over which the parameter estimation must
be performed [6].

⋄
Remark 6. Note that the set P′2,test is a subset of the
larger set P2,test ! projp IDθ (y2,test, Mtest). Indeed, P′2,test is
obtained from P2,test by only keeping the points whose
corresponding e coordinate values are in the calibration
set E2,cal. We use P′2,test because in the first correction step,
we identify p only after fixing the value of e to an arbitrary
point within E2,cal. ⋄
Example 3. We can perform the calibration-correction
method on the data correction problem described in Exam-
ple 2. The calibration step involves fitting the calibration
circuit model to its data, and obtaining the ESP values
(kc and enz0). The model fits and the MCMC posterior
distributions are shown in Figure 2i and 2ii (see the
Discussion section (Section VI) for some justification of
MCMC as a parameter set identification method). The first
three columns of Figure 2iii show the test circuit data to be
corrected, the estimation of the process (circuit) specific
parameters (correction step 1), and the corrected trajec-
tories (correction step 2) respectively. The final column
shows the results of an improvement to the method that
we call PSP fixing, and will be discussed when we discuss
parameter covariation. △
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Fig. 2. The calibration-correction method applied to the data correction
problem, as described in Examples 2 and 3. MCMC done using [7].
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Remark 7. We can define two failure conditions for the
calibration-correction method that will be useful in deriv-
ing the main theoretical results of this chapter. Both the
conditions must be avoided for the calibration-correction
method to solve the DCP.

The first condition (FC1) occurs if a parameter iden-
tification step is attempted when no parameter exists
such that the model fits the data. This means that the
data-model pair (y, M) under consideration is not in the
domain, Γ , of the operator ID. For example, in the first cor-
rection step, if ê2,cal is such that there is no p̃ that satisfies
y2,test = Mtest(ê2,cal, p̃), then the parameter estimation step
fails at this point. In terms of Equation (7), this failure
condition occurs if it occurs for any point e in E2,cal.

The second failure condition (FC2) occurs if correction
step two is able to produce a trajectory not equal to the
true trajectory, i.e., ŷ1,test ̸= y1,test. In terms of the set Y1
defined in Equation (8), this means that Y1 contains at
least one element that is not equal to y1,test. ⋄

IV. IDENTIFIABILITY CONDITIONS

In this section, we show that the SGI property is not
necessary for the calibration-correction method to solve
the DCP. This will be stated as a corollary of the main
result of this section (Theorem 1), which gives conditions
on the sets of parameters obtained during the calibration-
correction method such that the method solves the DCP.

The results rely on two insights. First, the set of output
indistinguishable parameters is an equivalence class with
respect to the problem of fitting model output trajectories
to data [1]. In terms of implementation, this means that an
arbitrary point may be picked from this set, and the model
output will fit the data trajectories at this point. Second,
the calibration-correction method involves only fitting and
predicting the output trajectories, and not the full state
trajectories. This allows us to consider the possibility
of treating the sets of parameters obtained during the
calibration step and the first correction step as equivalence
classes with respect to the prediction step (correction step
two) of the method. Indeed, we derive conditions under
which we may pick arbitrary points from the sets E2,cal,
C2,test and E1,cal and still have the method solve the DCP.

Theorem 1 (Parameter consistency). Consider the DCP in
the model universe. Furthermore, consider the calibration-
correction method, and the sets Θ̃cal, E1,cal, E2,cal and P′2,test.
Define Θi,test ! IDθ

&
yi,test, M test(θ )
'

for i = 1, 2. Then, the
conditions

Θ̃cal ̸= /, (9)
E2,cal ⊆ projeΘ2,test, (10)

E1,cal × P′2,test ⊆ Θ1,test, (11)

are necessary and sufficient for the calibration-correction
method to solve the DCP.

Proof. We note that solving the DCP using the calibration-
correction method simply involves avoiding the failure

conditions FC1 and FC2 described in Remark 7. Avoiding
FC1 wherever it may occur ensures that the method can
be implemented in the first place, and avoiding FC2 means
that the method returns only the desired result. Thus, we
must show that the conditions (9-11) are necessary and
sufficient for avoiding FC1 and FC2.

The necessity of condition (9) follows from the fact that
if Θ̃cal = /, then there does not exist a vector (e1, e2, p)
such that y i,cal = Mcal(ei , p) for i = 1, 2, leading to FC1 at
the calibration step. We note in passing that in the model
universe, condition (9) always holds.

Next, we prove the necessity of E2,cal ⊆ E2,test !
projeΘ2,test. Assume that there exists an ẽ ∈ E2,cal such
that ẽ /∈ E2,test. Thus, there does not exist a p̃ such that
Mtest((ẽ, p̃)) = y2,test. Since the operator IDp|e=ẽ is only
defined on the set {(y, M) | ∃p : M((ẽ, p)) = y}, we see
that the map IDp|e=ẽ(y2,test, Mtest(e, p)) is not well defined,
leading to FC1 at the first correction step.

We prove the necessity of condition (11) as follows.
Assume that there exists a (ẽ, p̃) ∈ E1,cal × P′2,test such that
(ẽ, p̃) /∈ Θ1,test. Since we use points ê ∈ E1,cal and p̂ ∈ P′2,test
to generate the prediction ŷ1,test in the second correction
step, it is possible that ê= ẽ and p̂= p̃. Since Θ1,test is the
set of all points (e, p) that give the correct trajectory y1,test,
we have the possibility that ŷ1,test ̸= y1,test, giving us FC2.

Finally, sufficiency is a simple consequence of the fact
that conditions (9-11) address both the points in the
method where FC1 could be met, and the point in the
method where FC2 could occur. Explicitly, condition (9)
allows the calibration step to avoid FC1, condition (10)
allows correction step one to avoid FC1, since it implies
that for all ẽ ∈ E2,cal, there exists a p̃ such that (ẽ, p̃) ∈
Θ2,test. Condition (11) enables correction step two to avoid
FC2, since it implies that for all ẽ ∈ E1,cal and for all
p̃ ∈ P′2,test we have that y1,test = Mtest(ẽ, p̃), implying that
the set of all possible predicted trajectories only has the
correct trajectory in it, Y1 = {y1,test}.
Remark 8. We can give some physical interpretations of the
conditions (9-11). To do this, we first note that condition
(11) implies (see the lemma in Appendix 2B of [6])

E1,cal ⊆ projeΘ1,test, (12)
P′2,test ⊆ P′1,test, (13)

where P′1,test is defined in a similar way to P′2,test.
Condition (9) and (12) may be interpreted to mean

that the calibration experiments must be more informative
about the ESPs than the test process experiments. This fol-
lows from the fact that the sets of output-indistinguishable
ESPs obtained from the calibration step are subsets of the
corresponding sets from the test processes, projeΘi,test.

Condition (13) says that the PSP sets for the test process,
if estimated by first fixing the ESPs to values obtained
at the calibration stage, must agree. Agreement here is
defined to be unidirectional, with one set being a subset
of another. This is only because the correction being
performed is from the candidate environment to the refer-
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ence environment. If bidirectional correction (Corollary 2
below) were required, then we would have equality in
condition (13).

Finally, condition (11) says that the ESP and PSP coordi-
nates in the set Θ1,test can only covary outside E1,cal×P′2,test,
i.e., all the points within this set must belong to Θ1,test.
Covariation is defined in Section V. ⋄

Next, we state a few corollaries of the theorem.

Corollary 1 (SGI Sufficiency). SGI models are sufficient
for the calibration-correction method to solve the DCP in
the model universe.

Proof. Since the models are SGI, the nominal model uni-
verse parameters uniquely fit the model to the data, and
therefore the sets in conditions (9-11) only have single
entries. Therefore, these conditions are trivially satisfied:

Θ̃cal = {(e1, e2, pcal)} ̸= /,
E2,cal = {e2} ⊆ proje{(e2, ptest)}= projeΘ2,test,
E1,cal × P′2,test = {e1}× {ptest} ⊆ {(e1, ptest)}= Θ1,test.

Corollary 2 (Bidirectional Correction). To be able to correct
the test data from either environment to the other requires
that:

Θ̃cal ̸= /,
Ei,cal ⊆ projeΘi,test, i = 1, 2,

E1,cal × P′2,test ⊆ Θ1,test,

E2,cal × P′1,test ⊆ Θ2,test.

Proof. The proof is a simple union of the sets of conditions
implied by Theorem 1 for each direction of correction.

Remark 9. We note that the condition P′2,test ⊆ P′1,test
discussed in Remark 8 gets transformed into P′2,test =
P′1,test. ⋄

Next we discuss the case of correcting the calibration
data itself. This will be important in the next section when
we examine the effect of a phenomenon called parameter
covariation on the calibration-correction method. There,
we will prove that a modified version of the method is
able to solve the problem at least for this case, even in
the presence of parameter covariation.

Corollary 3 (‘Test = Calib’ Case). Consider the DCP for
the case where y i,test = yi,cal and M test = M cal for i = 1, 2.
Furthermore, define Θi,cal ! IDθ

&
yi,cal, Mcal(θ )
'

for i = 1, 2,
and

P′2,cal !
⋃

ẽ∈E2,cal

IDp

&
y2,cal, Mcal (ẽ, p)
'

. (14)

Then, the conditions

Θ̃cal ̸= /, (15)
E2,cal ⊆ projeΘ2,cal, (16)

E1,cal × P′2,cal ⊆ Θ1,cal, (17)

are necessary and sufficient for the calibration-correction
method to solve this problem.

Proof. Simply specialize Theorem 1 to this case.

V. PARAMETER COVARIATION

In this section, we describe parameter covariation (Fig-
ure 3), and show that it causes the calibration-correction
method to fail. We then discuss an improvement to the
method that addresses this issue. We start by defining a
device that will be useful for taking slices of parameter
sets.

Definition 7 (Cutting Plane). Consider the space of pa-
rameters Rq, the vector θ ∈ Rq partitioned into two sets
of coordinates θ = (θa,θb) ∈Rqa ×Rqb and the subspaces
A! Rqa × {0} and B ! {0}×Rqb corresponding to the θa
and θb coordinates respectively. Let (θ̃a, 0) ∈ A. Then, we
denote the cutting plane generated by shifting the origin
of B to (θ̃a, 0) with the notation cutθb

(θ̃a).

Definition 8 (Parameter Covariation). Consider the space
of parameters Rq and the vector θ ∈ Rq partitioned
into two sets of coordinates θ = (θa,θb) ∈ Rqa × Rqb .
Consider some set of parameters Θ ⊆ Rq. If there exist
θ̃a1, θ̃a2 ∈ projθa

Θ such that projθb

&
Θ ∩ cutθb

(θ̃a1)
'
̸=

projθb

&
Θ ∩ cutθb

(θ̃a2)
'
, then Θ is said to have parameter

covariation of its θb coordinates with respect to its θa
coordinates.

Remark 10. We will often abbreviate parameter covaria-
tion to just covariation, and say that parameter coordinates
can covary. ⋄

K1

!1$:
+

L

CA B D

Fig. 3. Parameter covariation. (A) A Cartesian product condition is
equivalent to a set not having covariation (Lemma 1). (B) The definition
of covariation illustrated. (C) Thin covariation in the θa coordinates with
respect to the θb coordinates. (D) The set in blue does not display thin
covariation in the θa coordinates with respect to the θb coordinates.

Lemma 1. Let θ = (θa,θb) ∈ Θ ⊆Rq be a partition of the
coordinates of Rq. Then, the set Θ has covariation of its θb
coordinates with respect to its θa coordinates if and only if
projθa

Θ× projθb
Θ ̸= Θ.

Proof. First, we prove the (⇒) direction. Covariation im-
plies that for some θa1,θa2 ∈ projθa

Θ there exists a point
θ̃b ∈ projθb

Θ such that

θ̃b ∈
&

projθb

&
Θ ∩ cutθb

(θ̃a1)
'
△
&

projθb

&
Θ ∩ cutθb

(θ̃a2)
'
,

(18)

5644

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on July 25,2020 at 06:34:10 UTC from IEEE Xplore.  Restrictions apply. 



where △ is the symmetric difference set operation. It
further implies that there exists a point θ̃a ∈ {θ̃a1, θ̃a2} ⊆
projθa

Θ such that (θ̃a, θ̃b) /∈ Θ. Thus, projθa
Θ×projθb

Θ ̸=
Θ.

Next, we prove the (⇐) direction. Let (θ̃a1, θ̃b) ∈
projθa

Θ × projθb
Θ be such that (θ̃a1, θ̃b) /∈ Θ. Since θ̃b ∈

projθb
Θ, there exists a θ̃a2 ∈ projθa

Θ such that (θ̃a2, θ̃b) ∈
Θ. Thus we have θ̃b ∈ projθb

&
Θ ∩ cutθb

(θ̃a2)
'

but θ̃b /∈
projθb

&
Θ ∩ cutθb

(θ̃a1)
'
, which proves the assertion.

Corollary 4. The set Θ has covariation of its θb coordinates
with respect to its θa coordinates if and only if it has
covariation of its θa coordinates with respect to its θb
coordinates.

Proof. Using Lemma 1, along with a version of it where
the roles of θa and θb are swapped, leads to this result.

Remark 11. This equivalence will allow us to refer to sets
having covariation with respect to a given partition, such
as (e, p). ⋄

Next, we show that in the presence of covariation,
the calibration-correction method is unable to solve the
DCP even in the ‘Test = Calib’ case of Corollary 3. In
particular, we will assume that the restriction of Θ1,cal to
E1,cal×projpΘ2,cal has covariation with respect to the (e, p)
partition.

Proposition 1. Consider the ‘Test = Calib’ case of the DCP.
Assume the conditions

Θ̃cal ̸= /, (19)
P′2,cal ⊆ projpΘ1,cal, (20)

Ei,cal ⊆ projeΘi,cal, i = 1, 2, (21)

hold, but the set

Θ′1,cal ! Θ1,cal ∩
&
E1,cal × projpΘ2,cal

'
(22)

has covariation with respect to the (e, p) partition. Then, the
calibration-correction method fails to solve this problem.

Proof. Condition (20), along with the fact that for the ‘Test
= Calib’ case, P′2,cal = projpΘ2,cal, implies that projpΘ

′
1,cal =

P′2,cal. Condition (21) implies projeΘ
′
1,cal = E1,cal. Covari-

ation implies that projeΘ
′
1,cal × projpΘ

′
1,cal ̸= Θ′1,cal. Thus,

the proper subset relation Θ′1,cal ! E1,cal × P′2,cal holds,
and therefore there exists (ẽ, p̃) ∈ E1,cal × P′2,cal such that
(ẽ, p̃) /∈ Θ′1,cal ⊆ Θ1,cal. This implies that E1,cal×P′2,cal " Θ1,cal,
which violates condition (17).

Next, we show that for a specific type of covariation,
which we call thin covariation, a modified version of the
calibration-correction method is able to solve the DCP for
the ‘Test = Calib’ case.

Definition 9 (Thin Covariation). Let Θ ⊂ Rq be a set of
parameters and let (θa,θb) ∈ Rq be a partition of the co-
ordinates of Rq. If Θ covaries with respect to this partition
and if for all θ̃b ∈ projθb

Θ, we have
""cutθa

(θ̃b)∩Θ
"" = 1,

E2,cal

ê2

Ĉ2

E1,cal

ê1

Correction 
Step One

Calibration 
Step 

Correction 
Step Two

E1,cal

PSP

ESP ESP

ESP ESP

PSP

ESP

PSP

ESPE1,cal

Calibration
 Step 

With PSP fixingEffect of covariation  

ESPESP {ê2}

Ĉ2

E2,cal=E1,cal= {ê1}

Correction 
Step One

Correction 
Step Two

i

A

ii

i

B

ii

E1 E2 E1 E2

E2,cal

E2,cal

PSP

PSP PSP PSP PSP

Fig. 4. (A) A schematic description of how thin covariation between
the ESP-PSP coordinates in the estimated joint parameter sets can cause
calibration-correction to fail at correcting even the calibration data (‘Test
= Calib’ special case). The blue lines in all the plots are the joint ESP-
PSP sets of all the parameter values that fit the calibration model to data.
(B) How the PSP fixing modification (Definition 10) to the calibration
step helps solve this issue. The ESP sets estimated at the calibration step
are now generated by first intersecting the parameter sets (blue lines)
with a line parallel to the ESP axis (‘cutting plane’ parallel to the ESP
subspace in higher dimensions) centered at an arbitrary PSP value that
can be attained, and secondly projecting these intersections to the ESP
coordinates for both environments.

then we say that the covariation of the θa coordinates of
Θ is thin with respect to the θb coordinates.

Remark 12. We note that if Θ ! IDθ (y , M(θ )), then
the condition that for all θ̃b ∈ projθb

Θ, we have""cutθa
(θ̃b)∩Θ
"" = 1 is equivalent to the θa coordinates of

the model M(θa,θb) being SGI for each fixed θb. ⋄
Remark 12 says that this type of covariation is essentially

a statement about the some coordinates being condition-
ally structurally globally identifiable, despite covarying
with respect to the remaining coordinates.

Definition 10 (PSP Fixing). Consider the sets Θi,cal !
IDθ
&

yi,cal, Mcal(θ )
'
, i = 1, 2 and let p̃ ∈ projpΘ1,cal ∩

projpΘ2,cal. Then, we define PSP fixing as a modifica-
tion to the calibration step in which the sets Ei,cal !
proje
&
cute (p̃) ∩ Θi,cal

'
for i = 1, 2.

Proposition 2. Consider the sets Θi,cal !
IDθ
&

y i,cal, Mcal (θ )
'

for i = 1, 2, and the partition
θ = (e, p). Assume that the Θi,cal have thin covariation in
their p coordinates with respect to their e coordinates. Then,
the calibration-correction method with PSP fixing is able to
solve the DCP for the ‘Test = Calib’ case of Corollary 3.

Proof. Let p̃ ∈ projpΘ1,cal ∩ projpΘ2,cal and ẽ2 ∈
E2,cal ! proje
&
cute (p̃) ∩ Θ2,cal

'
. We note that the sets

projp
&
cutp (ẽ2) ∩ Θ2,cal

'
= IDp(y2,cal, Mcal (ẽ2, p)) are equal

by definition. Now, pick an arbitrary point p̃′ ∈
projp
&
cutp (ẽ2) ∩ Θ2,cal

'
. It follows that p̃′ = p̃ from the

fact that p̃ ∈ projp
&
cutp (ẽ2) ∩ Θ2,cal

'
and that the element

in
""cutθa

(θ̃b)∩Θ
"" = 1 is unique. Thus, the only possible

PSP value that can be returned by the first correction step
is p̃.

Next, we look at the second correction step. Pick an
arbitrary ẽ1 ∈ E1,cal ! proje

&
cute (p̃) ∩ Θ1,cal

'
. Since the

point (ẽ1, p̃) ∈ Θ1,cal, we have that y1,cal = ŷ1,cal ! M(ẽ1, p̃),
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and FC2 is avoided.

Example 4. The final column in Figure 2iii shows the
improvement in the data correction when PSP fixing is
performed. A model universe study with covariation and
PSP fixing visualized in three dimensions can be found in
[6]. △

VI. DISCUSSION

Our main goal has been to show that global (or even
local) structural identifiability is not an a priori necessary
condition for models to be useful, and have demonstrated
this idea on the problem of transforming or correcting
model behavior between environments. This data trans-
formation framework is not limited to batch correction in
cell extracts. Other examples include correction between
cell strains, between in vitro and in vivo environments, or
even between wind tunnels [2].

Next, we discuss some limitations and extensions of this
work. The results in this paper are stated for the ideal
case where the data are noise free, and some method of
getting the set of structurally non-identifiable parameters
is available. In practice, both of these conditions are only
met approximately: the data usually has some noise, and
set identification methods only give approximations to the
parameter sets (see [8] for a recent example). We suggest
co-opting Markov chain Monte Carlo (MCMC) methods,
such as emcee [9], to get the parameter distributions.
These distributions, with appropriately small noise model
parameters, and noise free model universe data, can give
good approximations to the true shape of the sets of
identified output-indistinguishable parameters. In general,
these sets are approximations because they will have
‘smeared out’ boundaries, no matter how small the noise
model term is made. While the subset relations derived in
this paper can still be checked, when the arbitrary points
are picked near the boundaries of the sets, some error will
appear in the corrected trajectories.

These considerations raise the possibility of extending
the set based arguments to a probabilistic setting, where
the consistency conditions become probabilistic, and both
structural and practical identifiability must be considered.

Another practical consideration related to parameter
identification is that, in general, the parameter sets to be
estimated may be infinitely large, and must be bounded
when estimated. This is a standard practice in the use
of MCMC to estimate parameters, and is implemented by
setting the prior probability distribution to zero outside
some hypercube.

The second set of limitations involves notions of how
informative the data is [10], such as persistence of excita-
tion and sufficient richness of inputs and initial conditions.
These are not explicitly considered here, precisely because
we are concerned with what can be accomplished by mod-
els when such conditions are not assumed, and structural
identifiability need not hold. This, however, raises the
intriguing possibility of generalizing such notions to one

that leads to "just enough" structural identifiability, in the
sense that with such inputs, initial conditions and data,
the non-identifiability satisfies the conditions in Theorem
1 or the condition of thin covariation (Definition 9). The
investigation of such a generalization is left as future work,
and may begin by first defining data to be sufficiently
informative if parameter consistency like conditions hold,
and then characterizing the properties of such data.

Another possible generalization of this work follows
from the fact that the non-necessity of identifiability
presented in this paper can be restated for the more
generic problem of the prediction of full system behavior
from the behavior of component subsystems. For example,
the simplest generalization of Theorem 1 would state a
Cartesian product like condition between the subsystem
parameter non-indentifiabilities and the full system non-
identifiabilities. Similarly, covariation and PSP fixing could
be generalized to conditions on which parameters must
be made identifiable by model reduction or careful ex-
periment design, and which ones may be allowed to stay
non-identifiable.

Finally, these results may be specialized to linear sys-
tems, and to specific classes of nonlinear systems, such as
bilinear systems [11].
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