
Supp. Fig. 1: Clustering results with the spatial coordinates of cells appended to the gene expression vectors
as features (i.e., using the incorrect approach for incorporating spatial information). Coronal section of the
mouse brain [1]. (a) Non-spatial clustering. As expected, the left and the right halves of the brain are
similar, and are marked by the same clusters. (b) When the spatial locations of cells are appended to the
cells’ features, following the method described in Fig. 7f of [2], cells that are far apart in physical space are
also far apart in feature space, even if they have the same transcriptomic signatures. Thus, the clustering
algorithm labels them differently. Spatial coordinates weighting: 1 × 10−6 (small). This effect is stronger
when the weighting of the spatial coordinates as features is increased (c: weight = 1 × 10−3 (medium); d:
weight = 1× 10−2 (large)).
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Supp. Fig. 2: Cluster assignments for the individual clusters in the Slide-seq v1 data that were not shown
in Fig. 2. As in Fig. 2, bottom two rows show comparison to RCTD weights from corresponding clusters in
scRNA-seq reference dataset, and to top DE marker genes from corresponding clusters in the reference
dataset (obtained from dropviz.org).
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Supp. Fig. 3: Cluster assignments for the individual clusters in the Slide-seq v2 data that were not shown
in Fig. 2. As in Fig. 2, lower two rows show comparison to RCTD weights from corresponding clusters in
scRNA-seq reference dataset, and to top DE marker genes from corresponding clusters in the reference
dataset (obtained from dropviz.org).
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Supp. Fig. 4: All clusters from BANKSY clustering. Clusters identifed as matching cell-type signatures in
reference scRNA-seq dataset (from dropviz.org) are labeled in red.
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Supp. Fig. 5: All clusters from non-spatial clustering. Clusters identifed as matching cell-type signatures in
reference scRNA-seq dataset (from dropviz.org) are labeled in red.
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Supp. Fig. 6: Plot of the difference in metagene expression (mean of top 20 DE genes, see Methods Section
4.3) in the granular layer cluster vs other clusters in Slide-seq v1, comparing each other cluster (blue) to
the granular layer (red). X-axis shows cells’ own expression. Y-axis shows average neighbor expression.
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Supp. Fig. 7: Plot of the difference in metagene expression (mean of top 20 DE genes,see Methods Section
4.3) in the granular layer cluster vs other clusters in Slide-seq v2, comparing each other cluster (blue) to
the granular layer (red). X-axis shows cells’ own expression. Y-axis shows the average neighbor expression.
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Supp. Fig. 8: (a) Point-biserial correlation (r) between each BANKSY cluster and RCTD weights from the
corresponding reference cluster, for both Slide-seq and Slide-seq v2. (b) Same as (a), for non-spatial clus-
ters. Green boxes indicate higher r values. All correlations along the diagonals are significant (associated
p-values, two-sided, uncorrected ≤ 0.05).
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Supp. Fig. 9: (a) Point-biserial correlation (r) between each BANKSY cluster and metagene (mean expression
of top DE genes in reference cell type) from the corresponding reference cluster, for both Slide-seq and
Slide-seq v2. (b) Same as (a), for non-spatial clusters. Green boxes indicate higher r values. All correlations
along the diagonals are significant (associated p-values, two-sided, uncorrected ≤ 0.05).
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Supp. Fig. 10: (a) UMAP representation of the cells in the own expression feature space versus those in
the BANKSY embedding space, colored by BANKSY cluster labels. This shows that the mature oligodendro-
cyte subclusters were mixed in the own-expression (conventional) feature space, but separated out in the
BANKSY embedding space (orange and red clusters). (c, d) The tissue maps show all twelve z-planes with
cells colored by both non-spatial clustering (c) and BANKSY clustering (d).
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Supp. Fig. 11: Mature oligodendrocytes shown on both the non-spatial and BANKSY UMAP coordinates. (a-d)
Non-spatial UMAP coordinates, all cells. (a) Moffitt et al.’s labels. (b-d) Our non-spatial clustering (λ = 0)
labels at increasing clustering resolutions. (e-h) BANKSY embedding UMAP coordinates. (e) Moffitt et al.’s
labels. (f-h) BANKSY (λ = 0.2) labels at increasing clustering resolutions. (i-l): Boxed region in panel a,
with Moffitt et al.’s labels (panel i), and our non-spatial labels at increasing clustering resolutions. (m-p)
Boxed region in panel e, with Moffitt et al.’s labels (panel m), and BANKSY’s labels at increasing clustering
resolutions. In particular, panels m and n show that the Moffitt et al. non-spatial labeling is along a
complementary axes relative to the BANKSY split, and panel o shows that at higher resolutions, BANKSY is
able to split the cells along both axes. (q-s) Non-spatial labels on the BANKSY embedding UMAPs showing
that non-spatial clustering at higher resolutions cannot capture the BANKSY split.
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Supp. Fig. 12: scRNA-seq corroboration of the mature oligodendrocyte (ODM) subclusters identified by
BANKSY in the mouse hypothalamus MERFISH dataset (Fig. 3). Distribution of scRNA-seq expression levels
of MERFISH DE genes and their top scRNA-seq guilt-by-association neighbors in mature oligodendrocytes
of the anterior commissure (red, MOD-wm, n = 6333 cells) and general hypothalamus (orange, MOD-gm, n
= 278 cells). (a) Genes with lower expression in anterior commissure. Center line: median, height of box:
interquartile range (IQR), whiskers:1.5×IQR. (b) Genes with higher expression in the anterior commissure.
Center line: median, height of box: interquartile range (IQR), whiskers:1.5×IQR. P-values: one-sided unpaired
Wilcoxon rank-sum test.
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Supp. Fig. 13: Excitatory and inhibitory neuronal subtypes in the MERFISH mouse hypothalamus dataset. (a)
BANKSY found the 6 spatially localized neuronal subtypes that were also highlighted by the authors of the
original study [3] in their main Fig. 5a. (b, c) 70 neuronal subtypes identified by non-spatial and BANKSY
iterative clustering, similar to Supp. Fig. S17 in the original study.
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Supp. Fig. 14: BANKSY’s spatial clustering continues to identify rare cell types identified by the original
study [3]. (a) Single cell thick layer of ependymal cells in the third ventricle (spatially localized population,
comprising 2.41% of cells (ARI between the Moffitt et al. annotations and BANKSY: 0.958). (b) The spatially
dispersed microglia population, comprising 2.12% of cells (ARI: 0.807). See Supp. Section 3.
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Supp. Fig. 15: Comparison of BANKSY and non-spatial clustering on MERSCOPE colorectal tumor data. a)
BANKSY UMAP, with a unique cycling cell population indicated by a red arrow. b) Non-spatial UMAP. c)
Spatial plots illustrating non-spatial clusters at increasing resolutions, zoomed in to a single gland to
visualize individual cells.
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Supp. Fig. 16: Heatmap showing the gene expression for the VeraFISH mouse hippocampus data in Fig. 4,
with annotation bars for all eight methods tested.

16



Supp. Fig. 17: Spatial distributions of VeraFISH mouse brain data clusters (Fig. 4), with annotations based on
key markers: 1–thalamic neurons (Slc17a6); 2–endothelial cells (Pecam1, Slc2a1); 3–hippocampal astrocytes
1 (dentate gyrus enriched, Slc1a2); 4–Ambiguous/putative doublets (scattered expression of Mobp/Bcas1
(oligodendrocytes), Nefl (neurons), and Atp1a2 (astrocytes)); 5–hippocampal astrocytes 2 (CA3 enriched,
Sox8); 6–dentate gyrus neurons; 7–thalamic oligodendrocytes (Plp1, Mobp, Mbp); 8–thalamic astrocytes
(Fgfr3); 9–CA1 neurons (Egr1, [4] ); 10–fornix oligodendrocyts 1 (Plp1, Mobp, Mbp); 11–Gfap marked layer
(possible astrocytes [5, 6]); 12–Inhibitory neurons (Gad2, Slc32a1); 13–fornix oligodendrocytes 2 (Plp1, Mobp);
14–CA3 neurons (Cadm3 [7]); 15–habenula neurons (Slc17a6, Tmem130); 16–oligodendrocyte precursor cells
(OPCs: Gpr17, Pdgfra); 17–microglia (Cx3cr1, Csf1r); 18–somatosensory cortex neurons (Tbr1, [8]). (b) two
closely related astrocyte subtypes, intermixed within the hippocampal formation and primary somatosen-
sory cortex of mouse brain. Upper panel: non-spatial cluster labels. Lower panel: BANKSY cluster labels.
Further examples of distinct cell types that are spatially intermingled, and remain separable by BANKSY
can be found in panel a: thalamic neurons, endothelial cells, thalamic oligodendrocytes, thalamic astro-
cytes, OPCs, and microglia. (c, d) Examples of spatially dispersed cell-types with distinctive marker gene
expression identified by BANKSY in the VeraFISH data: OPCs making up 2.28% of cells and microglia making
up 2.72% of cells. See Supp. Section 3.
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Supp. Fig. 18: scRNA-seq corroboration of the neuronal and oligodendrocyte subpopulations identified by
BANKSY in mouse hippocampus VeraFISH data. (a) Heatmap showing the top DE genes between CA3 neurons
and somatosensory cortex neurons. (b) Similar heatmap showing thalamic and fornix oligodendrocyte DE
genes. (c) Violin plots showing the expression of top marker and guilt-by-association genes in the two
neuronal (CA3 neurons, n = 322 cells; SSC neurons, n = 2064 cells) and (d) oligodendrocyte (thalamic oligos,
n = 87 cells; fornix oligos, n = 144 cells) subpopulations. Top: genes higher in CA3 neurons and thalamic
oligodendrocytes. Bottom: genes higher in somatosensory cortex neurons and fornix oligodendrocytes.
Center line: median, height of box: interquartile range (IQR), whiskers:1.5×IQR. P-values: one-sided unpaired
Wilcoxon rank-sum test.

18



Supp. Fig. 19: Spatial distributions of additional DE genes that distinguish the clusters in Fig. 4. Red: high
expression, White/purple: low expression.
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Supp. Fig. 20: Allen Mouse Brain Atlas images [9, 10] showing ISH and expression levels for some of the
DE genes in Fig. 4. (a) Schematic labelling the main regions in the hippocampus. (b-j) ISH images and
expression levels for genes in this region.
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Supp. Fig. 21: Qualitative cluster comparison for sample 151675, which is different from the sample shown
in the main text (sample 151673).
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Supp. Fig. 22: Inter-quartile range of accuracy scores (three metrics) across 12 DLPFC samples for each
method benchmarked. We used three metrics to quantify performance relative to the expert-annotated
ground truth: adjusted Rand index (ARI), normalized mutual information (NMI) and Matthews correlation
coefficient (MCC).

Supp. Fig. 23: Runtime for the DLPFC dataset as a function of the number of genes used for clustering.
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Supp. Fig. 24: Multi-sample analysis on 4 DLPFC Visium datasets from the same subject. Samples are z-
transformed separately and jointly clustered. Left: sample annotations. Right: BANKSY clusters.
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Supp. Fig. 25: Parameter sweep on the 10X Visium DLPFC dataset, varying the number of features used (highly
variable genes), number of principal components (PCs) and kexpr. (a) kexpr held constant. (b) Number of
highly variable genes held constant. (c) Number of principal components (PCs) held constant. Red boxes
show default values.
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Supp. Fig. 26: Parameter sweep of lambda λ for the MERFISH mouse hypothalamus dataset. (a) Sweep
from λ = 0 (non-spatial), through λ = 0.2 (cell typing) to λ = 0.8, 1 (domain segmentation). (b) Domain
segmentation lambda sweep in smaller steps. Domain labels as in Fig. 5d.
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Supp. Fig. 27: Parameter sweep of kgeom for VeraFISH mouse hippocampus.
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Supp. Fig. 28: Parameter sweep of kgeom for VeraFISH mouse hippocampus: UMAPs of the BANKSY embed-
ding.
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Supp. Fig. 29: Parameter sweep of λ for VeraFISH mouse hippocampus.
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Supp. Fig. 30: Parameter sweep of λ for VeraFISH mouse hippocampus: UMAPs of BANKSY embedding.
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Supp. Fig. 31: Parameter sweep of number of principal components (PCs) for VeraFISH mouse hippocampus.
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Supp. Fig. 32: Parameter sweep of number of principal components (PCs) for VeraFISH mouse hippocampus:
UMAPs of BANKSY embedding.
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Supp. Fig. 33: Parameter sweep of kexpr for VeraFISH mouse hippocampus.
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Supp. Fig. 34: Parameter sweep of kexpr for VeraFISH mouse hippocampus: UMAPs of BANKSY embedding.
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Supp. Fig. 35: Parameter sweep of kgeom for Slide-seq v1.
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Supp. Fig. 36: Parameter sweep of λ for Slide-seq v1.
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Supp. Fig. 37: Parameter sweep of number of principal components (PCs) for Slide-seq v1.
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Supp. Fig. 38: Parameter sweep of number of principal components (PCs) for Slide-seq v1 with non-spatial
clustering.
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Supp. Fig. 39: Parameter sweep of kexpr for Slide-seq v1.
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Supp. Fig. 40: Parameter sweep of kexpr for Slide-seq v1 with non-spatial clustering.
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1 Directly Appending Spatial Coordinates
As mentioned in the Results section, the naive approach of incorporating spatial information into clustering
methods is to append the spatial coordinates of cells to their gene expression vectors. This approach was
employed by, for instance, the authors of the DLPFC benchmark dataset ([2] Fig. 7f therein). We show that
this approach is suboptimal (Supp. Fig. 1) because it assumes that cells that are spatially distant must
be from different clusters, which is not true for elongated structures such as epithelial layers and blood
vessels, intercalated immune cells resident in tissues and intermingled neuronal and glial cells in the brain.

We describe this approach as follows. As in Section 4.1, let the cells be indexed by the set U =
{1, 2, . . . , N}, with spatial coordinates X = {(u, xu) ∈ U × R2}. Let us collect the coordinates of the
centroids of cells into a matrix,

X =
[
x1 x2 . . . xN

]
∈ R2×N , (1)

and as before, we define the gene-cell expression matrix by C = [ c1 c2 ... cN ] ∈ Rp×N , where cu ∈ Rp is the
expression of the p genes in cell u. We create an augmented feature-cell matrix,

A =

[ √
1− λ · C√
λ ·X

]
∈ R(p+2)×N , (2)

which, in terms of distance matrices, is Ddirect = λDexpression +(1−λ)Dphysical, where Dexpression is the matrix
of cell-cell distances in expression space, and Dphysical is the matrix of pairwise distances in physical space,
λ is a mixing parameter that controls the relative weighting of these two types of distances, and Ddirect is
the resulting ‘spatially informed’ distance matrix in this approach (corresponding to feature-cell matrix A
in Equation (2)).

This is similar to the approach taken in the geo-spatial literature [11], where adjacent municipalities in
southern France had to be grouped together based on their socio-economic features (analogous to genes
in our data), subject to a soft constraint that adjacent municipalities be labelled with the same label.

In spatial omics, this approach does not work because it tends to group cells that are physically near
each other into the same cluster, and label physically distant cells differently (Supp. Fig. 1). This is antithet-
ical both to cells of multiple different cell types being interspersed within a single region and to a single
cell type being located in different regions of tissue. Supp. Fig. 1 shows the effect of progressively increas-
ing the relative weighting of the spatial coordinates in the example of the two hemispheres of the brain.
This section of the brain is symmetric about the midline (for instance, the dentate gyrus, CA1-3 pyrami-
dal neurons, cortical layers, etc., are mirrored along the midline). At small weights, corresponding regions
incorrectly receive different labels, although it is still possible for spatially proximal cells to be labeled
differently. At higher weights, the tissue labeling degenerates into artefactual and spatially homogeneous
‘patches’ (Supp. Fig. 1d).

2 Convex Combinations of Squared Dissimilarities
In this section, we show that the weighted concatenation of feature-object matrices can equivalently be
formulated as a convex combination of the Hadamard square of corresponding cell-cell dissimilarity ma-
trices computed in BANKSY’s component spaces (own expression, mean neighborhood expression, and the
AGF features),

D◦2
B = (1− λ)D◦2

C +
λ

µ
D◦2

M +
λ

2µ
D◦2

G . (3)

Here, ( · )◦2 denotes element-wise squaring of the matrices, {DB, DC , DM, DG} are dissimilarity matrices
corresponding to the embeddings represented by the matrices {B, C,M,G} in Section 4.1, and µ = 1.5 is a
normalization factor.

This alternate point of view illuminates a general framework for combining different sources of dis-
similarity, or for adding ‘soft constraints’ [11] into clustering problems. In the BANKSY framework, we are
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adding dissimilarity terms associated with the texture of the gene expression in cells’ neighborhoods to
the traditional transcriptomic dissimilarity used in non-spatial clustering. In principle, other sources of in-
formation, such as staining or morphological features could also be included. Furthermore, this alternate
formulation allows for the incorporation of (potentially trainable) weights wuv to any of the dissimilarity
matrices between cells,

D(·) =

 w11d
c
11 w12d

c
12 · · · w1,Ndc1,N

...
... . . . ...

wN,1d
c
N,1 wN,2d

c
N,2 · · · wN,NdcN,N

 , (4)

a property that has no counterpart in the feature-object formulation. In what follows, we describe the
equivalence between the two formulations.

Let B, C, M, and G be as in Section 4.1 and write the uth column of the BANKSY matrix B as

bi =


√
1− λ · cu√
λ/µ · hM

u√
λ/(2µ) · hG

u

 ∈ R3p, (5)

where the dot (·) denotes multiplication of a scalar and a vector, cu, hM
u and hG

u are the u-th columns of
C, M, and G respectively.

Define dissimilarity matrices corresponding to the matrices {B, C,M,G},

DB =

 dB11 · · · dB1,N
... . . . ...

dBN,1 · · · dBN,N

 , DC=

 dC11 · · · dC1,N
... . . . ...

dCN,1 · · · dCN,N

 ,

DM =

 dM11 · · · dM1,N
... . . . ...

dMN,1 · · · dMN,N

 , DG=

 dG11 · · · dG1,N
... . . . ...

dGN,1 · · · dGN,N

 ,

with dBuv = ∥bu − bv∥2 the l2 distances in the neighbor augmented space, dCuv = ∥cu − cv∥2 the l2 distances
between cells in expression space, dMuv = ∥hM

u − hM
v ∥2, and dGuv = ∥hG

u − hG
v ∥2 the distances between cells

in the mean neighborhood expression and AGF spaces.
With these definitions, we may verify (using the properties of the l2 norm) that,

(dB)2uv =

∥∥∥∥∥∥


√
1− λ · cu√
λ/µ · hM

u√
λ/(2Mµ) · hG

u

−


√
1− λ · cv√
λ/µ · hM

v√
λ/(2Mµ) · hG

v

∥∥∥∥∥∥
2

2

= (1− λ)∥cu − cv∥22 +
λ

µ
∥hM

u − hM
v ∥22 +

λ

2µ
∥hG

u − hG
v ∥22

= (1− λ)(dCuv)
2 +

λ

µ
(dMuv )

2 +
λ

2µ
(dGuv)

2

which is just Equation (3) elementwise.

3 Identification of spatially interspersed cells and rare cell-types
In this section, we explain how BANKSY’s feature augmentation strategy allows for the identification of rare
and intermingled cell types.

A concern with methods that use neighborhood information to label cells is that the identities of cell-
types with subtly differing transcriptomes (e.g., hippocampal astrocytes in Supp. Fig. 17b) or rare cell-types
(ependymal cells (2.41% of cells) and microglia (2.12%) in Supp. Fig. 14; M2 macrophages (0.65% of cells) in
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Extended Data Fig. 2c, and OPCs (2.28%) and microglia (2.72%) in Supp. Figs. 17c, d) might get ‘smoothed out’
by the characteristics of their neighbors. This can happen in methods which aggregate a cell’s expression
with that of its neighbors (for instance, STAGATE, SpaGCN and GraphST). It can also happen implicitly with
HMRF-based methods that use the Potts model for regularization (for instance, BayesSpace and Giotto) to
bias the label given to a cell by the labels given to its neighbors. Both these classes of methods tend to
label cells based on the average or majority identity of cells in each neighborhood, and as a result, are
better suited to domain segmentation than cell-typing.

BANKSY takes a different approach. Instead of averaging a cell’s expression with the average (and AGF)
of its neighbors, it concatenates the three sets of features to give a larger set that together defines that
cell’s identity. This lifts the cells to a higher dimensional space where the unique characteristics of a cell’s
own expression and that of its neighborhood (i.e., average and AGF) are maintained separately.

The intuition for why such lifting works is best illustrated using the schematic shown in Extended Data
Fig. 1b. The middle panel in the bottom row shows what BANKSY’s neighbor-augmented space looks like
in cell-typing mode: the own expression and neighborhood expressions are along separate axes, and cells
may be separated along either or both axes.

In the case of two intermingled cell types with subtly different expression signatures, the cells’ neigh-
borhood expressions (encoded by average and AGF) are almost identical (they lie close to each other along
the red vertical axis), but their own expression signatures are different (they lie at different points along
the purple horizontal axis), and this separation in the embedding space can be used by the clustering
algorithm to assign them different labels. Similarly, in the case of a rare cell type surrounded by cells of
other types, the rare cell and its neighbors have identical neighborhood transcriptomes (similar points on
the vertical axis) but different own expression signatures. In both scenarios, BANKSY maintains the own
expression signature as a separate set of axes from the neighborhood expression signature, a property that
is not present in averaging based methods.

As mentioned above, averaging or aggregating a cell’s expression with that of its neighbors results in an
embedding that reflects local averages of cells’ transcriptomes. This property enables the clustering algo-
rithm to group cells into spatial domains defined by local transcriptomic characteristics. BANKSY achieves
domain segmentation in a similar way (rightmost panel, bottom row of Extended Data Fig. 1) by weighting
the neighborhood features more heavily, such that the embedding is dominated by the local neighborhood
averages.
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